99 research outputs found
Origin of ferromagnetism in (Zn,Co)O from magnetization and spin-dependent magnetoresistance
In order to elucidate the nature of ferromagnetic signatures observed in
(Zn,Co)O we have examined experimentally and theoretically magnetic properties
and spin-dependent quantum localization effects that control low-temperature
magnetoresistance. Our findings, together with a through structural
characterization, substantiate the model assigning spontaneous magnetization of
(Zn,Co)O to uncompensated spins at the surface of antiferromagnetic nanocrystal
of Co-rich wurtzite (Zn,Co)O. The model explains a large anisotropy observed in
both magnetization and magnetoresistance in terms of spin hamiltonian of Co
ions in the crystal field of the wurtzite lattice.Comment: 6 pages, 6 figure
Microstructure evolution in aluminium 6060 during incremental ECAP
An AA6060 Al-Mg-Si alloy was used to investigate the microstructure evolution on X, Y and Z planes after processing by Incremental Equal Channel Angular Pressing (IECAP) at room temperature after 1 and 4 passes. The basic microstructural parameters (mean grain size, grain boundary statistics) were evaluated
Formation of Fe and Ni substituted LiMn2-XMXO4 nanopowders and their crystal and electronic structure and magnetic properties
The Pechini sol-gel method was applied to obtain LiMn2-xTxO4 (T = Ni, Fe; x = 0.1 to 0.5) nanopowders. Crystal and electronic structures, chemical composition and magnetic properties of the materials were characterized by X-ray diffraction, XPS, SEM/EDX microscopy, prompt gamma-ray activation analysis (PGAA), Mössbauer spectroscopy and magnetic susceptibility, respectively. XRD measurements showed that the LiMn2-xNixO4 were single phase for x = 0.1 and 0.2. Three samples with higher Ni content contained some addition of a second phase. Analysis of the oxidation state of the dopants by XPS revealed ionic Ni2+ and Fe3+. Mössbauer spectroscopy also confirmed 3+ oxidation state of iron and its location in octahedral sites, which excluded the inverse spinel configuration. XPS examinations showed that Mn3+ ions dominated in the iron substituted series whereas the Mn4+ was dominant in the nickel serie
The dynamics of the non-heme iron in bacterial reaction centers from Rhodobacter sphaeroides
AbstractWe investigate the dynamical properties of the non-heme iron (NHFe) in His-tagged photosynthetic bacterial reaction centers (RCs) isolated from Rhodobacter (Rb.) sphaeroides. Mössbauer spectroscopy and nuclear inelastic scattering of synchrotron radiation (NIS) were applied to monitor the arrangement and flexibility of the NHFe binding site. In His-tagged RCs, NHFe was stabilized only in a high spin ferrous state. Its hyperfine parameters (IS=1.06±0.01mm/s and QS=2.12±0.01mm/s), and Debye temperature (θD0~167K) are comparable to those detected for the high spin state of NHFe in non-His-tagged RCs. For the first time, pure vibrational modes characteristic of NHFe in a high spin ferrous state are revealed. The vibrational density of states (DOS) shows some maxima between 22 and 33meV, 33 and 42meV, and 53 and 60meV and a very sharp one at 44.5meV. In addition, we observe a large contribution of vibrational modes at low energies. This iron atom is directly connected to the protein matrix via all its ligands, and it is therefore extremely sensitive to the collective motions of the RC protein core. A comparison of the DOS spectra of His-tagged and non-His-tagged RCs from Rb. sphaeroides shows that in the latter case the spectrum was overlapped by the vibrations of the heme iron of residual cytochrome c2, and a low spin state of NHFe in addition to its high spin one. This enabled us to pin-point vibrations characteristic for the low spin state of NHFe
The investigation of YAlO3-NdAlO3 system, synthesis and characterization
The binary phase diagram of the YAlO3 (YAP) - NdAlO3 (NAP) system was
determined by differential thermal analysis (DTA) and X-ray powder diffraction
(XRD) measurements. High purity nanocrystalline powders and small single
crystals of Y_{1-x}Nd_{x}AlO_3 (0 \leq x \leq 1) have been produced
successfully by modified sol-gel (Pechini) and micro-pulling-down methods,
respectively. Both end members show high mutual solubility >25% in the solid
phase, with a miscibility gap for intermediate compositions. A solid solution
with x \approx 0.2 melts azeotropic ca. 20 degrees below pure YAP. Such
crystals can be grown from the melt without segregation. The narrow
solid/liquid region near the azeotrope point could be measured with a "cycling"
DTA measurement technique.Comment: 12 pages, 8 figures, submitted to J. Alloys. Comp
Exploitation of Herpesvirus Immune Evasion Strategies to Modify the Immunogenicity of Human Mesenchymal Stem Cell Transplants
BACKGROUND: Mesenchymal stem cells (MSCs) are multipotent cells residing in the connective tissue of many organs and holding great potential for tissue repair. In culture, human MSCs (hMSCs) are capable of extensive proliferation without showing chromosomal aberrations. Large numbers of hMSCs can thus be acquired from small samples of easily obtainable tissues like fat and bone marrow. MSCs can contribute to regeneration indirectly by secretion of cytokines or directly by differentiation into specialized cell types. The latter mechanism requires their long-term acceptance by the recipient. Although MSCs do not elicit immune responses in vitro, animal studies have revealed that allogeneic and xenogeneic MSCs are rejected. METHODOLOGY/PRINCIPAL FINDINGS: We aim to overcome MSC immune rejection through permanent down-regulation of major histocompatibility complex (MHC) class I proteins on the surface of these MHC class II-negative cells through the use of viral immune evasion proteins. Transduction of hMSCs with a retroviral vector encoding the human cytomegalovirus US11 protein resulted in strong inhibition of MHC class I surface expression. When transplanted into immunocompetent mice, persistence of the US11-expressing and HLA-ABC-negative hMSCs at levels resembling those found in immunodeficient (i.e., NOD/SCID) mice could be attained provided that recipients' natural killer (NK) cells were depleted prior to cell transplantation. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate the potential utility of herpesviral immunoevasins to prevent rejection of xenogeneic MSCs. The observation that down-regulation of MHC class I surface expression renders hMSCs vulnerable to NK cell recognition and cytolysis implies that multiple viral immune evasion proteins are likely required to make hMSCs non-immunogenic and thereby universally transplantable
- …