205 research outputs found

    Effect of Gender and Defensive Opponent on the Biomechanics of Sidestep Cutting

    Get PDF
    Purpose: Anterior cruciate ligament (ACL) injuries often occur in women during cutting maneuvers to evade a defensive player. Gender differences in knee kinematics have been observed, but it is not known to what extent these are linked to abnormal neuromuscular control elsewhere in the kinetic chain. Responses to defense players, which may be gender-dependent, have not been included in previous studies. This study determined the effects of gender and defense player on entire lower extremity biomechanics during sidestepping. Methods: Eight male and eight female subjects performed sidestep cuts with and without a static defensive opponent while 3D motion and ground reaction force data were recorded. Peak values of eight selected motion and force variables were, as well as their between-trial variabilities, submitted to a two-way (defense × gender) ANOVA. A Bonferroni-corrected alpha level of 0.003 denoted statistical significance. Results: Females had less hip and knee flexion, hip and knee internal rotation, and hip abduction. Females had higher knee valgus and foot pronation angles, and increased variability in knee valgus and internal rotation. Increased medial ground reaction forces and flexion and abduction in the hip and knee occurred with the defensive player for both genders. Conclusions: A simulated defense player causes increased lower limb movements and forces, and should be a useful addition to laboratory protocols for sidestepping. Gender differences in the joint kinematics suggest that increased knee valgus may contribute to ACL injury risk in women, and that the hip and ankle may play an important role in controlling knee valgus during sidestepping. Consideration of the entire lower extremity contributes to an understanding of injury mechanisms and may lead to better training programs for injury prevention

    Using Situs for the integration of multi-resolution structures

    Get PDF
    Situs is a modular and widely used software package for the integration of biophysical data across the spatial resolution scales. It has been developed over the last decade with a focus on bridging the resolution gap between atomic structures, coarse-grained models, and volumetric data from low-resolution biophysical origins, such as electron microscopy, tomography, or small-angle scattering. Structural models can be created and refined with various flexible and rigid body docking strategies. The software consists of multiple, stand-alone programs for the format conversion, analysis, visualization, manipulation, and assembly of 3D data sets. The programs have been ported to numerous platforms in both serial and shared memory parallel architectures and can be combined in various ways for specific modeling applications. The modular design facilitates the updating of individual programs and the development of novel application workflows. This review provides an overview of the Situs package as it exists today with an emphasis on functionality and workflows supported by version 2.5

    Preservation of York Minster historic limestone by hydrophobic surface coatings

    Get PDF
    Magnesian limestone is a key construction component of many historic buildings that is under constant attack from environmental pollutants notably by oxides of sulfur via acid rain, particulate matter sulfate and gaseous SO 2 emissions. Hydrophobic surface coatings offer a potential route to protect existing stonework in cultural heritage sites, however, many available coatings act by blocking the stone microstructure, preventing it from 'breathing' and promoting mould growth and salt efflorescence. Here we report on a conformal surface modification method using self-assembled monolayers of naturally sourced free fatty acids combined with sub-monolayer fluorinated alkyl silanes to generate hydrophobic (HP) and super hydrophobic (SHP) coatings on calcite. We demonstrate the efficacy of these HP and SHP surface coatings for increasing limestone resistance to sulfation, and thus retarding gypsum formation under SO/H O and model acid rain environments. SHP treatment of 19th century stone from York Minster suppresses sulfuric acid permeation

    Metropolitan New York in the Greenhouse: Air Quality and Health Effects

    Get PDF
    A variety of potential effects on human health resulting from climate change have been identified in several assessments. According to an international panel{sup 1} they include direct effects of extreme temperatures on cardiovascular deaths, secondary effects due to vector-borne diseases or crop yields, and tertiary effects such as those that might arise from conflicts over freshwater supplies. To this fist we add the secondary effects of increased air pollution, which may result either directly from climate change or indirectly from increased air conditioning loads and the corresponding pollutant emissions from electric utilities. Higher ozone concentrations have been linked to increased ambient temperatures by both theory and observations of monitoring data. A similar association with particulate matter has been limited to observations, thus far. The pollution-heat linkage has been recognized before` but health effects have not been evaluated in terms of predictions of the joint effects of both agents. This paper has been prepared in two sections. First, we discuss the ozone situation with special reference to the Northeast Corridor and New York. In the second section, we present estimates of the health effects of climate change on New York and discuss some mitigation options

    Exposure to Concentrated Coarse Air Pollution Particles Causes Mild Cardiopulmonary Effects in Healthy Young Adults

    Get PDF
    Background: There is ample epidemiologic and toxicologic evidence that exposure to fine particulate matter (PM) air pollution [aerodynamic diameter ≤ 2.5 μm (PM2.5)], which derives primarily from combustion processes, can result in increased mortality and morbidity. There is ess certainty as to the contribution of coarse PM (PM2.5–10), which erives from crustal materials and from mechanical processes, to mortality and morbidity. Objective: To determine whether coarse PM causes cardiopulmonary effects, we exposed 14 healthy young volunteers to coarse concentrated ambient particles (CAPs) and filtered air. Coarse PM concentration averaged 89.0 μg/m3 (range, 23.7–159.6 μg/m3). Volunteers were exposed to coarse CAPs and filtered air for 2 hr while they underwent intermittent exercise in a single-blind, crossover study. We measured pulmonary, cardiac, and hematologic end points before exposure, immediately after exposure, and again 20 hr after exposure. Results: Compared with filtered air exposure, coarse CAP exposure produced a small increase in polymorphonuclear neutrophils in the bronchoalveolar lavage fluid 20 hr postexposure, indicating mild pulmonary inflammation. We observed no changes in pulmonary function. Blood tissue plasminogen activator, which is involved in fibrinolysis, was decreased 20 hr after exposure. The standard deviation of normal-to-normal intervals (SDNN), a measure of overall heart rate variability, also decreased 20 hr after exposure to CAPs. Conclusions: Coarse CAP exposure produces a mild physiologic response in healthy young volunteers approximately 20 hr postexposure. These changes are similar in scope and magnitude to changes we and others have previously reported for volunteers exposed to fine CAPs, suggesting that both size fractions are comparable at inducing cardiopulmonary changes in acute exposure settings. Originally published Environmental Health Perspectives, Vol. 117, No. 7, July 200
    • …
    corecore