14 research outputs found

    Insights into penicillin-induced Chlamydia trachomatis persistence

    No full text
    Chlamydia persistence is a viable, but non-cultivable, growth stage, resulting in a long-term relationship with the infected host cell. In vitro, this condition can be induced by different stressor agents, including beta-lactam antibiotics, as penicillin. The aim of this study was to get new insights into the interactions between Chlamydia trachomatis (serovars D and L2) and the epithelial host cells (HeLa) during persistence condition. In particular, we evaluated the following aspects, by comparing the normal chlamydial development cycle with penicillin-induced persistence: (i) cell survival/death, (ii) externalization of phosphatidylserine, (iii) caspase 1 and caspase 3/7 activation, and (iv) reactive oxygen species (ROS) production by the infected cells. At 72 h post-infection, the cytotoxic effect displayed by CT was completely abolished for both serovars and for all levels of multiplicity of infection only in the cells with aberrant CT inclusions. At the same time, CT was able to switch off the exposure of the lipid phosphatidylserine on the surface of epithelial cells and to strongly inhibit the activation of caspase 1 and caspase 3/7 only in penicillin-treated cells. Forty-eight hours post-infection, CT elicited a significant ROS expression both in case of a normal cycle and in case of persistence. However, serovar L and penicillin-free infection activated a higher ROS production compared to serovar D and to penicillin-induced persistence, respectively. In conclusion, we added knowledge to the cellular dynamics taking place during chlamydial persistence, demonstrating that CT creates a suitable niche to survive, switching off signals able to activate phagocytes/leukocytes recruitment. Nevertheless, persistent CT elicits ROS production by the infected cells, potentially contributing to the onset of chronic inflammation and tissue damages

    Thyroid autoimmunity and environment

    No full text
    Autoimmune thyroid disorders (AITDs) are the result of a complex interplay between genetic and environmental factors, the former account for about 70-80% of liability to develop AITDs. However, at least 20-30% is contributed by environmental factors, which include certainly smoking (at least for Graves' disease and orbitopathy), probably stress, iodine and selenium intake, several drugs, irradiation, pollutants, viral and bacterial infections, allergy, pregnancy, and post-partum. Evidence for the intervention of these factors is often limited, and the mechanisms whereby environmental factors may concur to the onset of AITDs are in many instances unclear. Nevertheless, gene-environment interaction seems a fundamental process for the occurrence of AITDs

    Mutant SPART causes defects in mitochondrial protein import and bioenergetics reversed by Coenzyme Q

    Get PDF
    Pathogenic variants in SPART cause Troyer syndrome, characterized by lower extremity spasticity and weakness, short stature and cognitive impairment, and a severe mitochondrial impairment. Herein, we report the identification of a role of Spartin in nuclear-encoded mitochondrial proteins. SPART biallelic missense variants were detected in a 5-year-old boy with short stature, developmental delay and muscle weakness with impaired walking distance. Patient-derived fibroblasts showed an altered mitochondrial network, decreased mitochondrial respiration, increased mitochondrial reactive oxygen species and altered Ca 2+ versus control cells. We investigated the mitochondrial import of nuclear-encoded proteins in these fibroblasts and in another cell model carrying a SPART loss-of-function mutation. In both cell models the mitochondrial import was impaired, leading to a significant decrease in different proteins, including two key enzymes involved in CoQ10 (CoQ) synthesis, COQ7 and COQ9, with a severe reduction in CoQ content, versus control cells. CoQ supplementation restored cellular ATP levels to the same extent shown by the re-expression of wild-type SPART, suggesting CoQ treatment as a promising therapeutic approach for patients carrying mutations in SPART

    Coenzyme Q biosynthesis inhibition induces HIF-1\u3b1 stabilization and metabolic switch toward glycolysis

    No full text
    Coenzyme Q10 (CoQ, ubiquinone) is a redox-active lipid endogenously synthesized by the cells. The final stage of CoQ biosynthesis is performed at the mitochondrial level by the \u2018complex Q\u2019, where coq2 is responsible for the prenylation of the benzoquinone ring of the molecule. We report that the competitive coq2 inhibitor 4-nitrobenzoate (4-NB) decreased the cellular CoQ content and caused severe impairment of mitochondrial function in the T67 human glioma cell line. In parallel with the reduction in CoQ biosynthesis, the cholesterol level increased, leading to significant perturbation of the plasma membrane physicochemical properties. We show that 4-NB treatment did not significantly affect the cell viability, because of an adaptive metabolic rewiring toward glycolysis. Hypoxia-inducible factor 1\u3b1 (HIF-1\u3b1) stabilization was detected in 4-NB-treated cells, possibly due to the contribution of both reduction in intracellular oxygen tension and ROS overproduction. Exogenous CoQ supplementation partially recovered cholesterol content, HIF-1\u3b1 degradation, and ROS production, whereas only weakly improved the bioenergetic impairment induced by the CoQ depletion. Our data provide new insights on the effect of CoQ depletion and contribute to shed light on the pathogenic mechanisms of ubiquinone deficiency syndrome

    The use of cyclododecane as a separating layer during the moulding of porous stones

    Get PDF
    This paper is published in the book ‘Subliming Surfaces: Volatile Binding Media in Heritage Conservation’, ed. Christina Rozeik (University of Cambridge Museums, 2018), pp. 123-125.The physicochemical properties of outdoor moveable artworks are modified by degradative environmental agents and biodeterioration. In many cases, the most effective action or intervention is to replace an artwork with a copy, moving the original into a museum or another more protected place. In general, this process entails moulding of the original and its reproduction using restoration mortars. This study evaluates the possibility of using cyclododecane (CDD) as a temporary barrier film during the moulding of extremely porous stone sculptures and ornaments. For this, samples of a travertine (calcium carbonate rock) called Tosca Rocafort were prepared. These travertines, exceptionally porous with numerous cavities, can be percolated in an irreversible way by moulding materials during the process of making a copy. By using a CDD barrier layer, the pores are sealed without losing the texture of stone substrate, and at the same time the silicone moulding material is prevented from penetrating the porous stone. To solve the problem of an affinity between the CDD and the silicone (both of which are non polar materials), several polar substances (4% agar-agar in water and pure latex) were tested as an intermediate insulation layer. This proposed method, based on a system of layers with different polarities, allowed us to isolate and protect the porous stone from the silicone elastomer, which is the cause of irreversible stains on stone substrates during mould-making. As an isolation layer, agar-agar proved unsatisfactory as it formed heterogeneous layers with low physical resistance, resulting in residues of moulding materials on the stone suface. In contrast, latex created homogenous layers while transmitting all details of the surface of the original work – and without leaving residues. The presented multi-layer system for moulding of porous materials has a number of advantages that make it appropriate for conservation and restoration work: good film-forming properties, very low toxicity, and ready reversibility (due to the ability of CDD to sublimate). The CDD film remains in place for long enough to allow the silicone moulding material to become vulcanised. However, it is easily removed through sublimation, which means that no intervention (possibly damaging to the surface of the stone) is necessary to remove the barrier layer. We conclude that CDD is a suitable temporary barrier material on porous stones, creating a homogeneous, impervious and inert film

    A coordinated multiorgan metabolic response contributes to human mitochondrial myopathy

    No full text
    Abstract Mitochondrial diseases are a heterogeneous group of monogenic disorders that result from impaired oxidative phosphorylation (OXPHOS). As neuromuscular tissues are highly energy‐dependent, mitochondrial diseases often affect skeletal muscle. Although genetic and bioenergetic causes of OXPHOS impairment in human mitochondrial myopathies are well established, there is a limited understanding of metabolic drivers of muscle degeneration. This knowledge gap contributes to the lack of effective treatments for these disorders. Here, we discovered fundamental muscle metabolic remodeling mechanisms shared by mitochondrial disease patients and a mouse model of mitochondrial myopathy. This metabolic remodeling is triggered by a starvation‐like response that evokes accelerated oxidation of amino acids through a truncated Krebs cycle. While initially adaptive, this response evolves in an integrated multiorgan catabolic signaling, lipid store mobilization, and intramuscular lipid accumulation. We show that this multiorgan feed‐forward metabolic response involves leptin and glucocorticoid signaling. This study elucidates systemic metabolic dyshomeostasis mechanisms that underlie human mitochondrial myopathies and identifies potential new targets for metabolic intervention

    A novel mutation in SPART gene causes a severe neurodevelopmental delay due to mitochondrial dysfunction with complex I impairments and altered pyruvate metabolism

    No full text
    Loss-of-function mutations in the SPART gene cause Troyer syndrome, a recessive form of spastic paraplegia resulting in muscle weakness, short stature, and cognitive defects. SPART encodes for Spartin, a protein linked to endosomal trafficking and mitochondrial membrane potential maintenance. Here, we identified with whole exome sequencing (WES) a novel frameshift mutation in the SPART gene in 2 brothers presenting an uncharacterized developmental delay and short stature. Functional characterization in an SH-SY5Y cell model shows that this mutation is associated with increased neurite outgrowth. These cells also show a marked decrease in mitochondrial complex I (NADH dehydrogenase) activity, coupled to decreased ATP synthesis and defective mitochondrial membrane potential. The cells also presented an increase in reactive oxygen species, extracellular pyruvate, and NADH levels, consistent with impaired complex I activity. In concordance with a severe mitochondrial failure, Spartin loss also led to an altered intracellular Ca2+ homeostasis that was restored after transient expression of wild-type Spartin. Our data provide for the first time a thorough assessment of Spartin loss effects, including impaired complex I activity coupled to increased extracellular pyruvate. In summary, through a WES study we assign a diagnosis of Troyer syndrome to otherwise undiagnosed patients, and by functional characterization we show that the novel mutation in SPART leads to a profound bioenergetic imbalance.-Diquigiovanni, C., Bergamini, C., Diaz, R., Liparulo, I., Bianco, F., Masin, L., Baldassarro, V. A., Rizzardi, N., Tranchina, A., Buscherini, F., Wischmeijer, A., Pippucci, T., Scarano, E., Cordelli, D. M., Fato, R., Seri, M., Paracchini, S., Bonora, E. A novel mutation in SPART gene causes a severe neurodevelopmental delay due to mitochondrial dysfunction with complex I impairments and altered pyruvate metabolism

    Biallelic variants in LIG3 cause a novel mitochondrial neurogastrointestinal encephalomyopathy

    No full text
    Abnormal gut motility is a feature of several mitochondrial encephalomyopathies, and mutations in genes such as TYMP and POLG, have been linked to these rare diseases. The human genome encodes three DNA ligases, of which only one, ligase III (LIG3), has a mitochondrial splice variant and is crucial for mitochondrial health. We investigated the effect of reduced LIG3 activity and resulting mitochondrial dysfunction in seven patients from three independent families, who showed the common occurrence of gut dysmotility and neurological manifestations reminiscent of mitochondrial neurogastrointestinal encephalomyopathy. DNA from these patients was subjected to whole exome sequencing. In all patients, compound heterozygous variants in a new disease gene, LIG3, were identified. All variants were predicted to have a damaging effect on the protein. The LIG3 gene encodes the only mitochondrial DNA (mtDNA) ligase and therefore plays a pivotal role in mtDNA repair and replication. In vitro assays in patient-derived cells showed a decrease in LIG3 protein levels and ligase activity. We demonstrated that the LIG3 gene defects affect mtDNA maintenance, leading to mtDNA depletion without the accumulation of multiple deletions as observed in other mitochondrial disorders. This mitochondrial dysfunction is likely to cause the phenotypes observed in these patients. The most prominent and consistent clinical signs were severe gut dysmotility and neurological abnormalities, including leukoencephalopathy, epilepsy, migraine, stroke-like episodes, and neurogenic bladder. A decrease in the number of myenteric neurons, and increased fibrosis and elastin levels were the most prominent changes in the gut. Cytochrome c oxidase (COX) deficient fibres in skeletal muscle were also observed. Disruption of lig3 in zebrafish reproduced the brain alterations and impaired gut transit in vivo. In conclusion, we identified variants in the LIG3 gene that result in a mitochondrial disease characterized by predominant gut dysmotility, encephalopathy, and neuromuscular abnormalities
    corecore