2,326 research outputs found

    Structural characterization of the Co/Cr multilayers by x-ray-absorption spectroscopy

    Get PDF
    [[abstract]]We have performed Cr and Co K-edge x-ray-absorption measurements to investigate the dependence of local electronic and atomic structures on the Cr-layer thickness in epitaxial Co(11¯00) (40 Å)/Cr(211) (tCr) (tCr=2, 3, 5, 7, and 9 Å) multilayers. The Cr K x-ray-absorption near-edge fine structure (XANES) spectra of the Co/Cr multilayers indicate an abrupt transition of the Cr layer from hcp to bcc structure when the thickness of the Cr layer is increased to exceed ∼5 Å or three atomic layers. Our results offer an upper limit for the ability of the Co/Cr interface to stabilize the hcp structure in the thin Cr layer. The numbers of nearest-neighbor and next-nearest-neighbor atoms in the Cr and Co layers determined by extended x-ray-absorption fine-structure measurements performed at the Cr and Co K edge, respectively, are consistent with the XANES results.[[journaltype]]國外[[incitationindex]]SCI[[booktype]]紙本[[countrycodes]]US

    Improving Customer Satisfaction in an R and D Environment

    Get PDF
    Satisfying customer needs is critical to the sustained competitive advantage of service suppliers. It is therefore important to understand the types of customer needs which, if fulfilled or exceeded, add value and contribute to overall customer satisfaction. This study identifies the needs of various research and development (R&D) customers who contract for engineering and design support services. The Quality Function Deployment (QFD) process was used to organize and translate each customer need into performance measures that, if implemented, can improve customer satisfaction. This study also provides specific performance measures that will more accurately guide the efforts of the engineering supplier. These organizations can either implement the QFD methodology presented herein or extract a few performance measures that are specific to the quality dimensions in need of improvement. Listening to 'what' customers talk about is a good first start

    Dust aerosol impact on North Africa climate: a GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data

    Get PDF
    The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM) developed at the University of California, Los Angeles (UCLA). The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol first indirect effect based on ice cloud and aerosol data retrieved from A-Train satellite observations have been employed in climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols at the top of the atmosphere (TOA) generally increase with increasing aerosol optical depth. When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing associated with aerosol semi-direct effect could exceed direct aerosol forcing. With the aerosol first indirect effect, the net cloud forcing is generally reduced in the case for an ice water path (IWP) larger than 20 g m<sup>−2</sup>. The magnitude of the reduction increases with IWP. <br><br> AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect results in less OLR and net solar flux at TOA over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. Adding the aerosol direct effect into the model simulation reduces the precipitation in the normal rainfall band over North Africa, where precipitation is shifted to the south and the northeast produced by the absorption of sunlight and the subsequent heating of the air column by dust particles. As a result, rainfall is drawn further inland to the northeast. This study represents the first attempt to quantify the climate impact of the aerosol indirect effect using a GCM in connection with A-Train satellite data. The parameterization for the aerosol first indirect effect developed in this study can be readily employed for application to other GCMs

    Structural transition in epitaxial Co/Cr multilayers as studied by X-ray absorption spectroscopy

    Get PDF
    [[abstract]]We have performed Cr and Co K-edge x-ray-absorption measurements to investigate the dependence of local electronic and atomic structures on the Cr-layer thickness in epitaxial Co (40A)/Ct (t~) (t~ = 2, 3, 5, 7, and 9A) multilayers. The Cr K x-ray absorption near edge structure (XANES) spectra of Co/Cr multilayers indicate an abrupt transition of the Cr layer from a bcc structure to a hcp structure when the thickness of the Cr layer is decreased down to -5A or three atomic layers. The structural transition and bond-length distortion in Cr and Co layers observed in the extended x-ray absorption fine structure (EXAFS) measurements are consistent with the XANES results.[[notice]]補正完畢[[journaltype]]國外[[booktype]]紙本[[booktype]]電子版[[countrycodes]]US

    Nonstoichiometric doping and Bi antisite defect in single crystal Bi2Se3

    Full text link
    We studied the defects of Bi2Se3 generated from Bridgman growth of stoichiometric and nonstoichiometric self-fluxes. Growth habit, lattice size, and transport properties are strongly affected by the types of defect generated. Major defect types of Bi_Se antisite and partial Bi_2-layer intercalation are identified through combined studies of direct atomic-scale imaging with scanning transmission electron microscopy (STEM) in conjunction with energy-dispersive X-ray spectroscopy (STEM-EDX), X-ray diffraction, and Hall effect measurements. We propose a consistent explanation to the origin of defect type, growth morphology, and transport property.Comment: 5 pages, 5 figure

    Biomass burning contribution to black carbon in the Western United States Mountain Ranges

    Get PDF
    Forest fires are an important source to carbonaceous aerosols in the Western United States (WUS). We quantify the relative contribution of biomass burning to black carbon (BC) in the WUS mountain ranges by analyzing surface BC observations for 2006 from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network using the GEOS-Chem global chemical transport model. Observed surface BC concentrations show broad maxima during late June to early November. Enhanced potassium concentrations and potassium/sulfur ratios observed during the high-BC events indicate a dominant biomass burning influence during the peak fire season. Model surface BC reproduces the observed day-to day and synoptic variabilities in regions downwind of but near urban centers. Major discrepancies are found at elevated mountainous sites during the July-October fire season when simulated BC concentrations are biased low by a factor of two. We attribute these low biases largely to the underestimated (by more than a factor of two) and temporally misplaced biomass burning emissions of BC in the model. Additionally, we find that the biomass burning contribution to surface BC concentrations in the USA likely was underestimated in a previous study using GEOS-Chem (Park et al., 2003), because of the unusually low planetary boundary layer (PBL) heights in the GEOS-3 meteorological reanalysis data used to drive the model. PBL heights from GEOS-4 and GEOS-5 reanalysis data are comparable to those from the North American Regional Reanalysis (NARR). Model simulations show slightly improved agreements with the observations when driven by GEOS-5 reanalysis data, but model results are still biased low. The use of biomass burning emissions with diurnal cycle, synoptic variability, and plume injection has relatively small impact on the simulated surface BC concentrations in the WUS

    Top-down estimates of biomass burning emissions of black carbon in the Western United States

    Get PDF
    We estimate biomass burning and anthropogenic emissions of black carbon (BC) in the western US for May–October 2006 by inverting surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network using a global chemical transport model. We first use active fire counts from the Moderate Resolution Imaging Spectroradiometer (MODIS) to improve the spatiotemporal distributions of the biomass burning BC emissions from the Global Fire Emissions Database (GFEDv2). The adjustment primarily shifts emissions from late to middle and early summer (a 33% decrease in September–October and a 56% increase in June–August) and leads to appreciable increases in modeled surface BC concentrations in early and middle summer, especially at the 1–2 and 2–3 km altitude ranges. We then conduct analytical inversions at both 2° × 2.5° and 0.5° × 0.667° (nested over North America) horizontal resolutions. The a posteriori biomass burning BC emissions for July–September are 31.7 Gg at 2° × 2.5° (an increase by a factor of 4.7) and 19.2 Gg at 0.5° × 0.667° (an increase by a factor of 2.8). The inversion results are rather sensitive to model resolution. The a posteriori biomass burning emissions at the two model resolutions differ by a factor of ~6 in California and the Southwest and by a factor of 2 in the Pacific Northwest. The corresponding a posteriori anthropogenic BC emissions are 9.1 Gg at 2° × 2.5° (a decrease of 48%) and 11.2 Gg at 0.5° × 0.667° (a decrease of 36%). Simulated surface BC concentrations with the a posteriori emissions capture the observed major fire episodes at most sites and the substantial enhancements at the 1–2 and 2–3 km altitude ranges. The a posteriori emissions also lead to large bias reductions (by ~30% on average at both model resolutions) in modeled surface BC concentrations and significantly better agreement with observations (increases in Taylor skill scores of 95% at 2° × 2.5° and 42 % at 0.5° × 0.667°)

    Virtual-pion and two-photon production in pp scattering

    Full text link
    Two-photon production in pp scattering is proposed as a means of studying virtual-pion emission. Such a process is complementary to real-pion emission in pp scattering. The virtual-pion signal is embedded in a background of double-photon bremsstrahlung. We have developed a model to describe this background process and show that in certain parts of phase space the virtual-pion signal gives significant contribution. In addition, through interference with the two-photon bremsstrahlung background, one can determine the relative phase of the virtual-pion process

    Origin of the magnetic moments in [formula omitted] epitaxial thin films

    Get PDF
    Crystalline films of [formula omitted] grown on (100) [formula omitted] substrates by rf sputtering have been investigated using magnetic circular dichroism and inverse photoemission spectroscopy. We find evidence for strong hybridization between unoccupied levels associated with Mn 3d and O 2p states. The oxygen atoms “pick-up” a small magnetic moment through hybridization with Mn. © 2000, American Institute of Physics. All rights reserved
    corecore