3,123 research outputs found

    Reply to the comment on 'Validity of certain soft photon amplitudes'

    Get PDF
    We respond to the accompanying Comment on our paper, 'Validity of certain soft photon amplitudes'. While we hope the discussion here clarifies the issues, we have found nothing which leads to a change in the original conclusions of our paper.Comment: 6 pages, Latex, uses ReVTeX, now publishe

    Evaluating foam heterogeneity

    Get PDF
    New analytical tool is available to calculate the degree of foam heterogeneity based on the measurement of gas diffusivity values. Diffusion characteristics of plastic foam are described by a system of differential equations based on conventional diffusion theory. This approach saves research and computation time in studying mass or heat diffusion problems

    Modeling of turbulent shear flows

    Get PDF
    The current progress is documented in the research and development of modeling techniques for turbulent shear flows. These include a two-scale model for compressible turbulent flows and a new energy transfer model. The former represents the status of the efforts to identify compressibility effects in turbulence. The energy transfer model refines a weakly nonlinear wave model developed earlier, which models directly the turbulent large structures. The objective of these activities is to develop second-order closures for compressible turbulent flows

    Wave models for turbulent free shear flows

    Get PDF
    New predictive closure models for turbulent free shear flows are presented. They are based on an instability wave description of the dominant large scale structures in these flows using a quasi-linear theory. Three model were developed to study the structural dynamics of turbulent motions of different scales in free shear flows. The local characteristics of the large scale motions are described using linear theory. Their amplitude is determined from an energy integral analysis. The models were applied to the study of an incompressible free mixing layer. In all cases, predictions are made for the development of the mean flow field. In the last model, predictions of the time dependent motion of the large scale structure of the mixing region are made. The predictions show good agreement with experimental observations

    On the basic equations for the second-order modeling of compressible turbulence

    Get PDF
    Equations for the mean and turbulent quantities for compressible turbulent flows are derived. Both the conventional Reynolds average and the mass-weighted, Favre average were employed to decompose the flow variable into a mean and a turbulent quality. These equations are to be used later in developing second order Reynolds stress models for high speed compressible flows. A few recent advances in modeling some of the terms in the equations due to compressibility effects are also summarized

    A multiple-scale model for compressible turbulent flows

    Get PDF
    A multiple-scale model for compressible turbulent flows is proposed. It is assumed that turbulent eddy shocklets are formed primarily by the 'collisions' of large energetic eddies. The extra straining of the large eddy, due to their interactions with shocklets, enhances the energy cascade to smaller eddies. Model transport equations are developed for the turbulent kinetic energies and the energy transfer rates of the different scale. The turbulent eddy viscosity is determined by the total turbulent kinetic energy and the rate of energy transfer from the large scale to the small scale, which is different from the energy dissipation rate. The model coefficients in the modeled turbulent transport equations depend on the ratio of the turbulent kinetic energy of the large scale to that of the small scale, which renders the model more adaptive to the characteristics of individual flow. The model is tested against compressible free shear layers. The results agree satisfactorily with measurements

    On the Basic Equations for the Second-order Modeling of Compressible Turbulence

    Get PDF
    Equations for the mean and the turbulence quantities of compressible turbulent flows are derived in this report. Both the conventional Reynolds average and the mass-weighted Favre average were employed to decompose the flow variable into mean and turbulent quantities. These equations are to be used later in developing second-order Reynolds stress models for high-speed compressible flows. A few recent advances in modeling some of the terms in the equation due to compressibility effects are also summarized

    Linear instability of curved free shear layers

    Get PDF
    The linear inviscid hydrodynamic stability of slightly curved free mixing layers is studied in this paper. The disturbance equation is solved numerically using a shooting technique. Two mean velocity profiles that represent stably and unstably curved free mixing layers are considered. Results are shown for cases of five curvature Richardson numbers. The stability characteristics of the shear layer are found to vary significantly with the introduction of the curvature effects. The results also indicate that, in a manner similar to the Goertler vortices observed in a boundary layer along a concave wall, instability modes of spatially developing streamwise vortex pairs may appear in centrifugally unstable curved mixing layers

    Modeling of compressible turbulent shear flows

    Get PDF
    Despite all the recent developments in computer technologies and numerical algorithms, full numerical simulations of turbulent flows are feasible only at moderate Reynolds numbers and for flows with relatively simple geometries. The main goal of this research is to develop new second order moment closures for compressible turbulence. It has been shown that the models based on the extension of those developed originally for incompressible flows fail to adequately predict turbulent flows at high Mach numbers. In this attempt, the compressibility effects are explicitly considered. A successful development of these models that directly takes into account the compressibility effects may have a range of technological implications in the design of supersonic and hypersonic vehicles

    Center for Modeling of Turbulence and Transition (CMOTT): Research Briefs, 1992

    Get PDF
    The progress is reported of the Center for Modeling of Turbulence and Transition (CMOTT). The main objective of the CMOTT is to develop, validate and implement the turbulence and transition models for practical engineering flows. The flows of interest are three-dimensional, incompressible and compressible flows with chemical reaction. The research covers two-equation (e.g., k-e) and algebraic Reynolds-stress models, second moment closure models, probability density function (pdf) models, Renormalization Group Theory (RNG), Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS)
    corecore