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LINEAR INSTABILITY OF CURVED FREE SHEAR LAYERS
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Institute for Computational Mechanics in Propulsion and
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Lewis Research Center

Cleveland, Ohio 44135

_Abstract

The linear inviscid hydrodynamic stability of slightly curved free mixing layers is studied

in this paper. The disturbance equation is solved numerically using a shooting technique. Two

mean velocity profiles that represent stably and unstably curved free mixing layers are considered.

Results are shown for cases of five curvature Richardson numbers. The stability characteristics of

the shear layer are found to vary significantly with the introduction of the curvature effects. The

results also indicate that, in a manner similar to the GSrtler vortices observed in a boundary layer

along a concave wall, instability modes of spatially developing streamwise vortex pairs may appear

in centrifugally unstable curved mixing layers.

I. Introduction

The hydrodynamic stability of slightly curved mixing layers is considered in this paper. Curved

free shear layers exist in many problems with more generalized flow geometries, such as the back-

ward facing step flow, flows with wall injection, and the flow inside side-dump combustors. It

may be argued that a detailed examination of the stability characteristics and the structure of the

curved free shear flow would provide a better understanding of the flow structures in the more

complex problems.

The stability mechanisms of an incompressible curved shear layer may depend on the effects

of the velocity difference and the streamline curvature. For a free shear layer with no streamline

curvature, or a plane shear layer, the Kelvin-Helmholtz instability is the dominant instability

mechanism 1. In this case, two-dimensional disturbances are more unstable than three-dimensional

disturbances 2 and the Kelvin-Helmholtz instability introduces predominantly spanwise vortices.

Rayleigh 3 proved that the existence of an inflection point in the basic velocity profile was a necessary

condition for the Kelvin-Helmholtz instability. For a curved free mixing layer with an inflectional

velocity profile, it may be expected that the Kelvin-Helmholtz instability mechanism is still present.

In addition to the inflectional instability, the centrifugal instability can also influence the

stability characteristics of a curved free mixing layer. The centrifugal force may either enhance

or stabilize disturbances. The underlying mechanism is similar to the Taylor-GSrtler instability.



Taylor instability occursin rotating flows,suchasthe Couetteflowbetweentwo rotating coaxial

cylinders. In this case,the instability producessteadytoroidal vorticesbetweenthe cylinders.
Sincethe work of Taylor4, the stability of the flow betweenrotating cylindershasbeenwidely

studied. The existenceof streamwisevorticesin a boundary layer over a concave wall was first

predicted by GSrtler 5 and re-examined later by Hall 6. GSrtler vortices appear in the form of

counter rotating vortices in the streamwise direction. Rayleigh 3 first showed that the necessary

and sufficient condition for an inviscid flow to be centrifugally stable to axi-symmetric disturbance is

that the square of the circulation should not decrease in the flow field. According to the Rayleigh

circulation criterion, the centrifugal force may destabilize curved free mixing layers if the inner

stream is faster. Therefore, both the Kelvin-Helmholtz and the centrifugal instabilities are relevant

to the hydrodynamic stability of curved free mixing layers. Much attention has been focused on the

individual instability mechanisms, as is evident by the great number of studies of these subjects.

However, we are unaware of any previous reported work that has studied the hydrodynamic stability

of free shear flows where both the Kelvin-Helmholtz instability and the centrifugal instability may

be present and compete against each other. In the present analysis, the competing mechanisms of

the Kelvin-Helmholtz and the centrifugal instabilities in curved free mixing layers is studied.

An instability analysis is also believed to be able to provide some insights into the turbulent

structure of curved free mixing layers. This is especially true if the recent developments of the

instability wave turbulence models are considered. These models describe the properties of the

dominant, large-scale coherent structures in turbulent free shear flows as instability waves associ-

ated with the Kelvin-Helmholtz instability. It has been shown 7'_'9 that the overall development of

the coherent large-scale structures in plane and axisymmetric turbulent free shear flows may be

well predicted by such instability wave models. The models are based on a weakly nonlinear theory

with a description of the coherent large-scale structures as hydrodynamic instability waves. Using

an integral analysis and assumed mean profiles, Morris el aI.7 and Viswanathan and Morris s suc-

cessfully predicted the growth of plane and axisymmetric shear layers for a wide range of operating

conditions. This includes the effects of velocity and density ratio as well as the free stream Mach

numbers. Liou and Morris 9 constructed a true turbulence closure scheme based on an instability

wave model for the large-scale structures and successfully predicted the mean velocity of a plane

mixing layer.

Large-scale spanwise vortical structures have been observed in both stably and unstably curved

mixing layers i°. These structures appear to be less two-dimensional in an unstably curved mixing

layer than they are in a stably curved mixing layer. In addition, the Reynolds shear stress of

an unstably curved free mixing layer has a higher peak level and a wider distribution in the low

speed region than those in a plane mixing layer _1. It is arguable that the centrifugal instabilities

are responsible for the difference between the two cases. It should_be noted that, according to



the Rayleighcriterion, centrifugalforcesstabilizethe flowwith a fast streamon the outside of

the slow stream. Therefore, in this case, the Kelvin-Helmholtz instability should dominate. If

the mixing layer is unstably curved, when the fast stream is on the inside of the slow stream, the

centrifugal instabilities are likely to produce streamwise disturbances and, subsequently, change

the characteristic structures in the flow. Therefore, a knowledge of the interaction mechanisms

between the two different types of instability that exist in the curved free mixing layer should help

to extend the application of instability wave models to such flows.

In the next section, the derivation of the governing equations for the disturbances is described.

It is followed by a brief description of the basic velocity profile and the solution method used in

the present analysis. Finally, some results of the calculations are presented and discussed.

II. Formulation and M.ethod of Solution

Stability Equations

The flow geometry is shown in Figure 1. The curved free mixing layer is described in a cylindrical

coordinate system, (r, 8, z). The instantaneous value of a flow variable, ¢, is decomposed into a

time-independent component denoted by the upper case and a fluctuation denoted by a prime.

That is,

9"(r',e',z',t') = v"(r',0*,z*,t') (1.a)

_*(r*,O*,z*,t') = u"(r',O*,z',t') ÷ U'(r') (1.b)

= w"(r',e*,z',r) (1.c)

_*(r',6*,z*,t*) =p"(r*,6*,z*,t*) ÷ P'(r*) (1.d)

where v*,u*,w* are the velocity components in the r',8*, and z" directions, respectively, p*

denotes pressure.

For simplicity, the parallel flow assumption, commonly used in hydrodynamic stability analysis

is applied. This approximation leads to the leading-order problem in a multiple scales method that

includes the effects of the slow flow divergence z2. Thus, in the current analysis, these effects are

not considered.

Since the basic flow variation occurs mainly in the shear region, a streamline coordinate system

is used. The transformation is,

r* = R*+ y', (2.a)

r'd0* = dx* (2.b)

where R" is the radius of curvature of a certain characteristic contour line of the curved mixing

layer. In this analysis, it is taken as the contour line of the half velocity point of the basic velocity.
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For simplicity, the value of R* is assumed to be Constant and much greater than the thickness, 5,

of the curved mixing layer. That is,
5 1- - <<i (3)
R* R

The continuity and the momentum equations are nondimensionalized with respect to 5 as the

length scale and the velocity of the high speed stream as the velocity scale and linearized about

the basic flow. Separable solutions are then sought for the fluctuations in the form,

v' ) v(v) [_(_ + _z or)]} (4)
w' = i w(v) ezp
p' (p(y)

The u,w,p variables may be eliminated from the linearized equations and a modified Rayleigh

equation for the cross-stream velocity perturbation, v(y), is found to be given by,

• d2v 2RU dv(_v - _)_-_v_+

2U f12 dU
-[(_v - _)(_2 + _2) + ____ _ T_ff: o _]_ = 0. (5)

This equation is valid to the first order in R -I. a and _ denote the wavenumbers in the streamwise

and the spanwise directions and a is the frequency. The curvature terms in Eq.(5) are due to the

centrifugal force alone. Equation (5) reduces to the Rayleigh equation 3 for plane mixing flows as

the curvature terms are neglected. If only streamwise vortices are considered, Eq. (5) reduces to

the equation governing the inviscid stability of the flow along a curved wall la.

The disturbance kinetic energy equation can be written as

Ox -- dy R) ÷ (u'k') + -_y

_z V'k'+ (-W_) + R

0 (w'p') v'p'
Oz R

_--_(u'p') - 0_(vp)

- _ + viscous terms (6)

where k--} = (u '2 + v '2 + w'2)/2. The curvature Richardson number, which is defined as (minus)

the ratio of the kinetic energy production of the vt-component to that of the u_-component, can

be written as,

2U / dU U

The Richardson number is a measure of the effects of the curvature of the mixing layer. The

Richardson number is zero for a plane mixing layer. The physical boundary conditions used in this

analysis are that the disturbances vanish in the far field.



Mean Velocity Profiles

Two types of velocity distribution will be considered here. They are,

Case 1 : U(y) = _ (1 + tanh(y)) (S.a)

]

Case 2 : U(y) = _(1-tanh(y)) (S.b)

The profile based on the hyperbolic tangent function closely mimics the measured mean velocity

profile of plane free mixing layers and has been widely used in the linear stability analysis of the

plane free mixing layer 1. For mildly curved mixing layers, the velocity profiles had been observed 14

to have similar distributions to that of plane mixing layer. Consequently, Eq. (8) is likely to be

a reasonable representation of the velocity profile of a curved free mixing layer. Case 1 represents

the velocity profile of a stably curved mixing layer. That is, the high speed stream is on the outside

of the low speed stream. Case 2 corresponds to a curved free mixing layer with the high speed

stream on the inside of the low speed stream. In this case, in addition to the instability modes

arising from the inflectional instability, the centrifugal instabilities may also be present.

The Richardson numbers, evaluated at the half velocity point, for Case 1(+) and Case 2(-)

may be written,

I 2/(+1+ 1) (9)
U=0.5

From EQ. (5), the following forms of solution in the two cases can be obtained outside the shear

layers in the regions of constant velocity,

Case I:
_2

v(y) _ exp([. R(o_ - a) =l:( R2(_- a)2 + a2 + B2)½ly)

as y --. cx_ (10.a)

Case 2:

-. +

as y --* "R

v(y) _ exp(±(a 2 + fl=)½Y)

as y --+ O0

(10.b)

(10.c)

G G2

v(y) _ exp([ R(c_ - a) 4- (R2(c_ _ a) 2

as

+ +Z2)½]y)

y _ -R (10.d)



Thephysicalboundaryconditionsthat the disturbancesvanishfar from theshearlayerdetermine

the propersignsto beusedin theexponents.Equations(5)and (10)definean eigenvalue problem.

In the spatial instability analysis described here, the complex streamwise wave number, a, is the

eigenvalue and the frequency, a, is taken to be real. Solutions are sought that grow as the flow

develops downstream.

Numerical Scheme

The modified Rayleigh equation (5) is integrated numerically using a fourth-order fixed step-

size Runge-Kutta scheme. A shooting procedure is used to solve for the eigenvalue, c_. On the

concave side of the curved mixing layer, the integration starts away from the center of curvature

at the edge of the shear layer. The stability code is an extension of a plane mixing layer stability

code is, which has been validated against the results of Michalke l and other numerical solutions.

The initial guesses for the eigenvalues for the Kelvin-Helmholtz instability are taken as the eigen-

value for the corresponding plane mixing layer. For the centrifugal instability, the intial guesses

for the eigenvalue are obtained by a grid search technique. The results of the spatial instability

calculations are presented in the next section.

III. Results and Discussions

Casel.

Results for three different values of stable curvatures are shown for Case 1. The values of

1/R are 0.0, 0.025, and 0.05. The corresponding Richardson numbers are 0, 0.0488, and 0.0952,

respectively. In this case, according to the Rayliegh circulation criteria, the centrifugal force

generated by the streamline curvature works against the growth of disturbances and tends to

stabilize the flow. The curved mixing layer, however, is still subject to the Kelvin-Helmholtz

instability due to its inflectional velocity profile.

Figure 2a shows the variation of the spatial growth rate with frequency of the two-

dimensional(2D) Kelvin-Helmholtz modes(B = 0). It can be seen that, as the curvature of the

mixing layer increases, the spatial growth rate decreases. Similar trends can also be seen in Figure

2b, which shows the growth rate variation for oblique modes with _ = 0.3. For a plane mixing layer

(1/R = Rf = 0), it is known that the 2D modes are more unstable than the oblique modes of the

same frequency. Oblique modes are also seen to be less amplified than 2D modes in a stably curved

free mixing layer. As the curvature increases, the 2D modes become relatively more unstable than

the oblique modes. For instance, for 1/R = 0.05, the maximum growth rate of the oblique mode

with fl = 0.3 is only approximately 60% of that of the 2D mode, compared to a relative value of

80% for the plane mixing layer where 1/R = O.



Figure 2 alsoshowsthat, in the stablycurvedmixing layer,the Kelvin-Helmholtzmodesare
lessunstableand the frequencyrangeof the unstablemodesis alsoreduced.Figure3 showsthe

eigenfunction,v, of the oblique modes with _ -- 0.3. The eigenfunctions are normalized such that

v(0) = 1. The distributions of the eigenfunctions change only slightly with curvature. Similar

characteristics are also observed for the 2D modes in this case.

_ase2

For this case, results are shown for two unstably curved free mixing layers. The values of the

curvature are 0.025 and 0.05. The corresponding Rf are -0.0513 and -0.105, respectively. The

velocity profile used in this case simulates that of curved free mixing layers with the high speed

stream on the inside of the low speed stream. As stated earlier, the centrifugal force is expected to

further destabilize the mixing layer in this case. At each frequency, a hierarchy of unstable modes

has been identified by the grid search study. Figure 4 shows the eigenvalue spectrum for _ = 0.7.

For clarity, only the modes with the three highest growth rates are included. The phase velocity,

a/a,., of the mode with the highest growth rate, or mode 1, maintains a value of approximately

one half of the mean free stream velocity and varies only slightly with frequency. This is not the

case for the other two modes, denoted by mode 2 and mode 3. The growth rates of the mode 2

and mode 3 are much lower than those of the mode 1. The modes 1, 2, and 3 with a = 0.05 are

marked mode A, B, and C in Figure 4a, respectively. Their flow parameters can be found in Table

.

Table 1. Mode parameters

mode

A

B

C

D

E

F

G

0.7

0.7

0.7

cr

0.05

0.05

0.05

0.7 0

0.7 0

0.7 0

0.7 0

0.09298 0.18087

0.09310 0.05250

0.07618 0.02328

0 0.18885

0 0.12470

0 0.09478

0 0.05220

The vorticity patterns of the modes A, B, and C were studied. The results are presented in

Figure 9. It will be shown that the mode 1 is actually the Kelvin-Helmholtz mode being influenced

by the centrifugal forces. On the other hand, the mode 2 and the mode 3 show characteristics of

both the Kelvin-Helmholtz instability mode and the centrifugal instability mode.

The effects of the streamline curvature on the mode 1 can be seen in Figure 5. Figure 5a shows

the variation of the spatial growth rate of the 2D modes with frequency. The frequency range and

the growth rates of the unstable modes are both seen to increase with increasing curvature. This is



alsotrue for the obliquemodes.Thegrowthratepredictionsfor themodeswith _ = 0.5 are shown

in Figure 5b. The unstable curvature has enhanced the Kelvin-Helmholtz instability uniformly

over the entire unstable frequency range. Figure 6 shows the spatial growth rate for the Kelvin-

Helmholtz modes with different spanwise wavenumbers. The curvature is set to 1/R = 0.05. Figure

6 reveals some very interesting characteristics of the effects of curvature on the Kelvin-Helmholtz

instability. The growth rates of the 2D modes are not uniformly higher than that of the oblique

modes. For waves with large spanwise wave number, the growth rates of the 2D modes are lower

than those of the oblique modes at low frequency. It should be recalled that in Case 1, where the

high speed stream is on the outside of the low speed stream, the 2D modes remain dominant as

the curvature changes.

Figure 6 shows that the effects of the unstable curvature on the Kelvin-Helmholtz modes are

highly dependent on the frequency and the spanwise wavenumber. In the absence of curvature ef-

fects, the growth rates are uniformly zero for all the Kelvin-Helmholtz mode of zero frequency. With

curvature, the spatial growth rates at zero frequency are finite and their absolute values increase

with increasing wave angles. The growth rate of the spatially developing, time-independent(a = 0)

oblique mode equals that of the most unstable 2D mode at a certain wave angle, beyond which

the time-independent oblique modes become the most unstable modes.

This observation leads to a study of the characteristics of the zero frequency or time-

independent unstable modes. Again, a grid search technique has been used to determine the

possible locations of eigenvalues in the complex wave number plane. This has been done for dif-

ferent values of the spanwise wavenumber, _, and curvature, 1/R. The observed eigenvalues are

then further refined by use of the shooting technique. The growth rate results are shown in Figure

7. It should be noted that, for modes with zero frequency, c_ = 0. That is, these modes are

spatially amplifying; yet they assume no periodicity in time or in the streamwise direction. Con-

sequently, from Eq.(10), solutions of the modified Rayieigh equation, that decay exponentially in

2 Indeed, no eigenvalues can be identified in the grid searchthe far field, exist only for _2 > _.

2 For a = 0, a series of eigenvalues can be identified in the grid search studyprocess for _2 < a_.

for each value of the spanwise wavenumber, _. Figure 7 shows only the modes with the three high-

est growth rates. They appear to vary in a nearly linear fashion with the spanwise wavenumber.

Instability modes with similar characteristics were also found in boundary layers along concave

wall. Denier 16 studied the inviscid, spatially growing GSrtler modes in a boundary layer and found

that their growth rates varied linearly with the spanwise wavenumber. Therefore, the behavior of

these modes are likely to be associated with the centrifugal instability. It should be noted that the

modes marked D, E, and F in Figure 7 are in fact the mode 1, the mode 2, and the mode 3 with

= 0, respectively. The flow parameters of the modes D-F are summarized in Table 1.

Compared to a plane mixing layer, the unstable curvature is seen to not only enhance the

8



Kelvin-Helmholtzmodesbut alsogeneratenewmodes.Somequestionsonemayaskimmediately
include:how do the Kelvin-Helmholtzmodeschangefrom a planeto an unstablycurvedmixing

layer and how are the new modes different from the Kelvin-Helmholtz modes, particularly in

their streamwise and spanwise structure? Since these new modes are generated by the centrifugal

instability, do they represent streamwise structures similar to the GSrtler vortices that may develop

in unstably curved boundary layers ? To attempt to answer these questions, the production of

the wave kinetic energy and the vorticity patterns of these new modes have been examined. The

distributions of the production term, which is the first term on the right hand side of Eq.(6), of the

modes D, E, and F are shown in Figure 8. Note that the mixing layer is unstably curved and the

eigenfunctions are normalized such that v(0) = 1. For clarity, the wave energy production of the

modes D and E have been multiplied by a factor of five. Figure 8 shows that there are one, two,

and three peaks in the production profiles of the modes, D, E, and F, respectively. The production

profile for a typical Kelvin-Helmholtz mode in a plane mixing layer, say for the most unstable

mode, shows one positive peak and a small region of negative production on the low speed region.

Therefore, these peaks in the disturbance energy production profiles of the curved mixing layer are

indicative of possible coherent local events. Coherent local events may exist in the region where

the production of disturbance kinetic energy is strong. This can be demonstrated by examination

of the corresponding flow patterns.

Figure 9 shows the disturbance streamwise vorticity contours, w_, over one wavelength for the

_r -- 0 modes D, E, F and G. For comparison, the u;x contour plots for the modes A, B, and C

are also included. The spanwise wavenumbers of the mode A-G are the same. It should be noted

that there is a smooth transition between modes A, B and C, and D, E and F, respectively. This

implies that, for example, the mode A and D are the same mode at different frequencies. Contours

of positive and negative levels are denoted by solid and dashed lines, respectively. The _ contours

of the mode A are similar to those of the Kelvin-Helmholtz mode in a plane mixing layer, showing

staggered vortices of opposite signs. These vortices extend across the region of substantial mean

shear. Compared with the mode A, the vortices associated with the mode B are elongated in the

spanwise direction; such that regions of three vortices of opposite signs, partially stacked across

the mixing layers, are formed. Likewise, the vorticity contours of the mode C are further elongated

and show similar patterns to that of the rood2: B. While thevorticity contour patterns of all three

modes, including the modes A, B, and C, are similar, the spatial growth rate of the mode A is four

and eight times that of the modes B and C, respectively.

Figures 9d-gf show the w_ contour plots of the modes D, E, and F. The w_ contours of the

mode D suggests that this mode is a pair of counter-rotating streamwise vortices, similar to the

GSrtler vortices observed in a boundary layer with a concave or unstably curved wall. Figure

9e shows that the disturbances of the mode E appears as two pairs of counter-rotating vortices



stackingon top of each other with the neighboring vortices rotating in the opposite directions.

Not surprisingly, the mode F, which has the third highest growth rate among the hierarchy of the

zero-frequency/3 - 0.7 modes is associated with disturbances with three counter-rotating vortex

pairs with neighboring vortices rotating in the opposite directions. This is shown in Figure 9f.

The trend of the increasing number of counter-rotating vortex pairs being associated with modes

of increasingly lower growth rates is seen to continue. Figure 9g show the w_ contours of the mode

G. Up to six counter-rotating vortex pairs can be identified. Based on what is known about the

first three modes, it can be expected that a total of six peaks can be found in th_ profile of the

wave kinetic energy production of this mode. It is also interesting to note that the locations of the

vortex pair structures of the various modes shown in Figures 9d-9g are all biased toward the low

speed side of the curved mixing layer. Like the spatially growing GSrtler instability, the modes

D-G are also spatially amplifying and have no periodicity in time.

Figure 10 shows the wz contour plots for only the modes A, B, and C. The streamwise

wavenumbers of the mode D, E, and F are zero. For clarity, the plots are stretched in the y

direction. The contours show patterns similar to that of Kelvin-Helmholtz instabilities in a plane

mixing layer, showing staggered vortices of opposite signs. For the modes B and C, the spanwise

vorticity is concentrated around the inflection point of the mean velocity profile.

IV. Summary

The effects of streamline curvature on the stability of free mixing layers has been studied.

With an inflectional mean velocity profile, a plane mixing layer is subject to the Kelvin-Helmholtz

instability. When a mixing layer is stably curved, the curvature reduces the growth rate of the

Kelvin-Helmholtz modes over the whole unstable frequency range. If the mixing layer is unstably

curved, the Kelvin-Helmholtz modes become more unstable. In addition, various new modes are

identified in the eigenvalue grid search study. These include a hierarchy of zero frequency modes

which appear as layers of counter-rotating vortex pairs. Another group of the new modes bears

some resemblance to both the Kelvin-Helmholtz mode and the centrifugal mode. The present

study shows that, when the mixing layer is unstably curved, spatially growing, time-independent

modes, similar to the GSrtler vortices that are observed in a boundary layer along a concave wall,

may also develop in the unstably curved free mixing layer.
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Figure 1. A sketch of curved free shear layer.
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Figure 2. Variation of growth rate with frequency
for the Kelvin-Helmholtz modes. Case 1.
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