2,437 research outputs found

    On the basic equations for the second-order modeling of compressible turbulence

    Get PDF
    Equations for the mean and turbulent quantities for compressible turbulent flows are derived. Both the conventional Reynolds average and the mass-weighted, Favre average were employed to decompose the flow variable into a mean and a turbulent quality. These equations are to be used later in developing second order Reynolds stress models for high speed compressible flows. A few recent advances in modeling some of the terms in the equations due to compressibility effects are also summarized

    On the Basic Equations for the Second-order Modeling of Compressible Turbulence

    Get PDF
    Equations for the mean and the turbulence quantities of compressible turbulent flows are derived in this report. Both the conventional Reynolds average and the mass-weighted Favre average were employed to decompose the flow variable into mean and turbulent quantities. These equations are to be used later in developing second-order Reynolds stress models for high-speed compressible flows. A few recent advances in modeling some of the terms in the equation due to compressibility effects are also summarized

    A multiple-scale turbulence model for incompressible flow

    Get PDF
    A multiple-scale eddy viscosity model is described. This model splits the energy spectrum into a high wave number regime and a low wave number regime. Dividing the energy spectrum into multiple regimes simplistically emulates the cascade of energy through the turbulence spectrum. The constraints on the model coefficients are determined by examining decaying turbulence and homogeneous turbulence. A direct link between the partitioned energies and the energy transfer process is established through the coefficients. This new model was calibrated and tested for boundary-free turbulent shear flows. Calculations of mean and turbulent properties show good agreement with experimental data for two mixing layers, a plane jet and a round jet

    Nonstoichiometric doping and Bi antisite defect in single crystal Bi2Se3

    Full text link
    We studied the defects of Bi2Se3 generated from Bridgman growth of stoichiometric and nonstoichiometric self-fluxes. Growth habit, lattice size, and transport properties are strongly affected by the types of defect generated. Major defect types of Bi_Se antisite and partial Bi_2-layer intercalation are identified through combined studies of direct atomic-scale imaging with scanning transmission electron microscopy (STEM) in conjunction with energy-dispersive X-ray spectroscopy (STEM-EDX), X-ray diffraction, and Hall effect measurements. We propose a consistent explanation to the origin of defect type, growth morphology, and transport property.Comment: 5 pages, 5 figure

    Workshop on Engineering Turbulence Modeling

    Get PDF
    Discussed here is the future direction of various levels of engineering turbulence modeling related to computational fluid dynamics (CFD) computations for propulsion. For each level of computation, there are a few turbulence models which represent the state-of-the-art for that level. However, it is important to know their capabilities as well as their deficiencies in order to help engineers select and implement the appropriate models in their real world engineering calculations. This will also help turbulence modelers perceive the future directions for improving turbulence models. The focus is on one-point closure models (i.e., from algebraic models to higher order moment closure schemes and partial differential equation methods) which can be applied to CFD computations. However, other schemes helpful in developing one-point closure models, are also discussed

    Anatomy of the Soft-Photon Approximation in Hadron-Hadron Bremsstrahlung

    Full text link
    A modified Low procedure for constructing soft-photon amplitudes has been used to derive two general soft-photon amplitudes, a two-s-two-t special amplitude MμTsTtsM^{TsTts}_{\mu} and a two-u-two-t special amplitude MμTuTtsM^{TuTts}_{\mu}, where s, t and u are the Mandelstam variables. MμTsTtsM^{TsTts}_{\mu} depends only on the elastic T-matrix evaluated at four sets of (s,t) fixed by the requirement that the amplitude be free of derivatives (∂\partialT/∂\partials and /or ∂\partialT/∂t\partial t). Likewise MμTuTtsM^{TuTts}_{\mu} depends only on the elastic T-matrix evaluated at four sets of (u,t). In deriving these amplitudes, we impose the condition that MμTsTtsM^{TsTts}_{\mu} and MμTuTtsM^{TuTts}_{\mu} reduce to MˉμTsTts\bar{M}^{TsTts}_{\mu} and MˉμTuTts\bar{M}^{TuTts}_{\mu}, respectively, their tree level approximations. The amplitude MˉμTsTts\bar{M}^{TsTts}_{\mu} represents photon emission from a sum of one-particle t-channel exchange diagrams and one-particle s-channel exchange diagrams, while the amplitude MˉμTuTts\bar{M}^{TuTts} _{\mu} represents photon emission from a sum of one-particle t-channel exchange diagrams and one-particle u-channel exchange diagrams. The precise expressions for MˉμTsTts\bar{M}^{TsTts}_{\mu} and MˉμTuTts\bar{M}^{TuTts}_{\mu} are determined by using the radiation decomposition identities of Brodsky and Brown. We point out that it is theoretically impossible to describe all bremsstrahlung processes by using only a single class of soft-photon amplitudes. At least two different classes are required: the amplitudes which depend on s and t or the amplitudes which depend on u and t. When resonance effects are important, the amplitude MμTsTtsM^{TsTts}_{\mu}, not MμLow(st)M^{Low(st)}_{\mu}, should be used. For processes with strong u-channel exchange effects, the amplitude MμTuTtsM^{TuTts}_{\mu} should be the first choice.Comment: 49 pages report # LA-UR-92-270

    A New K-epsilon Eddy Viscosity Model for High Reynolds Number Turbulent Flows: Model Development and Validation

    Get PDF
    A new k-epsilon eddy viscosity model, which consists of a new model dissipation rate equation and a new realizable eddy viscosity formulation, is proposed. The new model dissipation rate equation is based on the dynamic equation of the mean-square vorticity fluctuation at large turbulent Reynolds number. The new eddy viscosity formulation is based on the realizability constraints: the positivity of normal Reynolds stresses and Schwarz' inequality for turbulent shear stresses. We find that the present model with a set of unified model coefficients can perform well for a variety of flows. The flows that are examined include: (1) rotating homogeneous shear flows; (2) boundary-free shear flows including a mixing layer, planar and round jets; (3) a channel flow, and flat plate boundary layers with and without a pressure gradient; and (4) backward facing step separated flows. The model predictions are compared with available experimental data. The results from the standard k-epsilon eddy viscosity model are also included for comparison. It is shown that the present model is a significant improvement over the standard k-epsilon eddy viscosity model

    Virtual-pion and two-photon production in pp scattering

    Full text link
    Two-photon production in pp scattering is proposed as a means of studying virtual-pion emission. Such a process is complementary to real-pion emission in pp scattering. The virtual-pion signal is embedded in a background of double-photon bremsstrahlung. We have developed a model to describe this background process and show that in certain parts of phase space the virtual-pion signal gives significant contribution. In addition, through interference with the two-photon bremsstrahlung background, one can determine the relative phase of the virtual-pion process

    Biomass burning contribution to black carbon in the Western United States Mountain Ranges

    Get PDF
    Forest fires are an important source to carbonaceous aerosols in the Western United States (WUS). We quantify the relative contribution of biomass burning to black carbon (BC) in the WUS mountain ranges by analyzing surface BC observations for 2006 from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network using the GEOS-Chem global chemical transport model. Observed surface BC concentrations show broad maxima during late June to early November. Enhanced potassium concentrations and potassium/sulfur ratios observed during the high-BC events indicate a dominant biomass burning influence during the peak fire season. Model surface BC reproduces the observed day-to day and synoptic variabilities in regions downwind of but near urban centers. Major discrepancies are found at elevated mountainous sites during the July-October fire season when simulated BC concentrations are biased low by a factor of two. We attribute these low biases largely to the underestimated (by more than a factor of two) and temporally misplaced biomass burning emissions of BC in the model. Additionally, we find that the biomass burning contribution to surface BC concentrations in the USA likely was underestimated in a previous study using GEOS-Chem (Park et al., 2003), because of the unusually low planetary boundary layer (PBL) heights in the GEOS-3 meteorological reanalysis data used to drive the model. PBL heights from GEOS-4 and GEOS-5 reanalysis data are comparable to those from the North American Regional Reanalysis (NARR). Model simulations show slightly improved agreements with the observations when driven by GEOS-5 reanalysis data, but model results are still biased low. The use of biomass burning emissions with diurnal cycle, synoptic variability, and plume injection has relatively small impact on the simulated surface BC concentrations in the WUS
    • …
    corecore