1,342 research outputs found

    Sustainable Recycling of Insoluble Rust Waste for the Synthesis of Iron-Containing Perovskite-Type Catalysts

    Get PDF
    Insoluble rust waste from the scraping of rusted iron-containing materials represents a cheap, eco-friendly, and available source of iron. LaFeO3 perovskite-type powders were successfully prepared by solution combustion synthesis using rust waste from an electricity transmission tower manufacturer. Solution combustion synthesis enabled introduction of this insoluble iron precursor directly into the final product, bypassing complex extraction procedures. Catalytic activity in the propylene oxidation of the waste-derived LaFeO3 with stoichiometric Fe/La ratio was almost identical to the commercial iron nitrate-derived LaFeO3 , thus demonstrating the viability of this recycling solution. The amount of waste iron precursor was varied and its effect on the powder properties was investigated. A lesser stoichiometric amount of precursor produced a LaFeO3 -La2O3 binary system, whereas a higher stoichiometric amount led to a LaFeO3 -Fe2O3 binary system. Catalytic activity of iron-rich compositions in the propylene oxidation was only slightly lower than the stoichiometric one, whereas iron-poor compositions were much less active. This eco-friendly methodology can be easily extended to other iron perovskites with different chemical compositions and to other iron-containing compounds

    Strontium and iron-doped barium cobaltite prepared by solution combustion synthesis: exploring a mixed-fuel approach for tailored intermediate temperature solid oxide fuel cell cathode materials

    Get PDF
    Ba0.5Sr0.5Co0.8Fe0.2O3–δ (BSCF) powders were prepared by solution combustion synthesis using single and double fuels. The effect of the fuel mixture on the main properties of this well-known solid oxide fuel cell cathode material with high oxygen ion and electronic conduction was investigated in detail. Results showed that the fuel mixture significantly affected the area-specific resistance of the BSCF cathode materials, by controlling the oxygen deficiency and stabilizing the Co2+ oxidation state. It was demonstrated that high fuel-to-metal cations molar ratios and high reducing power of the combustion fuel mixture are mainly responsible for the decreasing of the area-specific resistance of BSCF cathode materials. Moreover, a new metastable monoclinic phase with Ba0.5Sr0.5CO3 composition was discovered in the as-burned BSCF powders, enlarging the existing information on the BSCF phase formation mechanis

    First Evidence of Tris(catecholato)silicate Formation from Hydrolysis of an Alkyl Bis(catecholato)silicate

    Get PDF
    The hydrolysis of 3-ammoniumpropylbis(catecholato)silicate 1, giving two different silica-based materials containing different amounts of tris(catecholato)silicate, is reported. The latter species can be formed through an attack of catechol to the silicon atom in the pentacoordinate complex, in which the silicon-carbon bond is further activated toward electrophilic proton cleavage. The Knoevenagel reaction was used as a probe in order to test the availability of functional groups on the surface of such materials

    Adhesive and Rheological Features of Ecofriendly Coatings with Antifouling Properties

    Get PDF
    In this work, formulations of "environmentally compatible" silicone-based antifouling, synthesized in the laboratory and based on copper and silver on silica/titania oxides, have been characterized. These formulations are capable of replacing the non-ecological antifouling paints currently available on the market. The texture properties and the morphological analysis of these powders with an antifouling action indicate that their activity is linked to the nanometric size of the particles and to the homogeneous dispersion of the metal on the substrate. The presence of two metal species on the same support limits the formation of nanometric species and, therefore, the formation of homogeneous compounds. The presence of the antifouling filler, specifically the one based on titania (TiO2) and silver (Ag), facilitates the achievement of a higher degree of cross-linking of the resin, and therefore, a better compactness and completeness of the coating than that attained with the pure resin. Thus, a high degree of adhesion to the tie-coat and, consequently, to the steel support used for the construction of the boats was achieved in the presence of the silver-titania antifouling

    A study on the stability of carbon nanoforms–polyimidazolium network hybrids in the conversion of co2 into cyclic carbonates: Increase in catalytic activity after reuse

    Get PDF
    Three different carbon nanoforms (CNFs), single-walled and multi-walled carbon nanotubes (SWCNTs, MWCNTs) and carbon nanohorns (CNHs), have been used as supports for the direct polymerization of variable amounts of a bis-vinylimidazolium salt. Transmission electron microscopy confirmed that all CNFs act as templates on the growth of the polymeric network, which perfectly covers the nanocarbons forming a cylindrical (SWCNTs, MWCNTs) or spherical (CNHs) coating. The stability of these hybrid materials was investigated in the conversion of CO2 into cyclic carbonate under high temperature and CO2 pressure. Compared with the homopolymerized monomer, nanotube-based materials display an improved catalytic activity. Beside the low catalytic loading (0.05–0.09 mol%) and the absence of Lewis acid co-catalysts, all the materials showed high TON values (up to 1154 for epichlorohydrin with SW-1:2). Interestingly, despite the loss of part of the polymeric coating for crumbling or peeling, the activity increases upon recycling of the materials, and this behaviour was ascribed to their change in morphology, which led to materials with higher surface areas and with more accessible catalytic sites. Transmission electron microscopy analysis, along with different experiments, have been carried out in order to elucidate these findings

    Ultrasonographic measurements of abdominal lymph nodes in growing puppies

    Get PDF
    The sonographic appearance of the normal abdominal lymph nodes in adult dogs has been well described, but the data in puppies are scarce and of poor quality. The aim of the current study was to evaluate any differences in abdominal lymph node sonographic measurements in puppies of various sizes and to determine whether any differences were correlated with growth and weight gain during the first 10 weeks of life. By an approach based on prospective and serial measurements, length, width and thickness of jejunal, medial iliac and hypogastric nodes were obtained in twenty-one healthy puppies of various sizes, at six (T0), eight (T1) and ten (T2) weeks of age. The relationship between body weight and length, width and thickness of lymph nodes was evaluated using a Pearson correlation analysis. An ANOVA test was used to compare the measurements at different ages. Jejunal and iliac lymph nodes were the largest in large breed dogs. In large-sized puppies only the length of the jejunal lymph nodes correlated positively with width and body weight. Length of medial iliac lymph nodes correlated positively with width and body weight in all three sizes. None of the measurements of hypogastric lymph nodes were related to body weight. In large-sized puppies jejunal and iliac lymph nodes increased in length and width with age; in medium-sized puppies only iliac lymph nodes increased; in small-sized puppies jejunal and iliac lymph nodes significantly decreased in length and thickness. In conclusion, the lymph node sizes in young animals are directly related to body weight and do not decrease with growth during the first 10 weeks of life, except in small-sized puppies

    Mathematical modeling of the metastatic process

    Full text link
    Mathematical modeling in cancer has been growing in popularity and impact since its inception in 1932. The first theoretical mathematical modeling in cancer research was focused on understanding tumor growth laws and has grown to include the competition between healthy and normal tissue, carcinogenesis, therapy and metastasis. It is the latter topic, metastasis, on which we will focus this short review, specifically discussing various computational and mathematical models of different portions of the metastatic process, including: the emergence of the metastatic phenotype, the timing and size distribution of metastases, the factors that influence the dormancy of micrometastases and patterns of spread from a given primary tumor.Comment: 24 pages, 6 figures, Revie
    corecore