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Abstract: The methodologies and experimental conditions used for the synthesis of cathode materials
for electrochemical devices strongly influence their electrocatalytic performance. In particular,
solution combustion synthesis is a convenient and versatile methodology allowing a fine-tuning of
the properties of the material. In this work, we used for the first time a sucrose assisted-solution
combustion synthesis for the preparation of Cerium and Cobalt-doped SrFeO;_; electrocatalysts
and we investigated the effect of polyethylene glycol (PEG) addition as a secondary fuel on their
structural, microstructural, redox and electrochemical properties. The perovskite-type powders were
characterized by X-ray diffraction coupled with Rietveld refinement, scanning, and high-resolution
transmission electron microscopies, thermogravimetric analysis, nitrogen adsorption measurements,
and temperature-programmed reduction. Electrical conductivity and overpotential measurements
were performed after the deposition of the powders onto a Gd-doped ceria electrolyte pellet. Stable
high-valence B-site cations were detected in the powders prepared from sucrose-PEG fuel mixtures,
although a substantial improvement of the conductivity and a decrease of the overpotential values
were obtained only with high molecular weight PEG. The superior electrochemical performance
obtained using PEG with high molecular weight has been ascribed to a faster interaction of the
powder with the oxygen gas phase favored by the nanometer-sized crystalline domains.

Keywords: doped strontium ferrate; fuel effect; solution combustion synthesis; sucrose-assisted
combustion; solid oxide fuel cells; cathode materials; polyethylene glycol

1. Introduction

Solution combustion synthesis (SCS) is a convenient synthesis route to obtain perovskite-type
materials [1-4]. In SCS, a fast heat-induced chemical chain reaction propagates through a gel network
between the oxidizing agents, namely metal nitrates (which represent also the source of metal cations),
and the reducing organic molecules (fuel) with chelating properties towards the metal cations [2].
Among the SCS tunable parameters, the fuel type needs to be properly chosen in order to prepare
materials with targeted properties [1,2,5]. In particular, the fuel-type can affect phase composition,
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morphology, surface charge, oxidation states of the component elements, thermal stability, and
electric-magnetic characteristics of the obtained materials [5,6]. Besides having reducing, chelating, and
templating functions, an important feature of the fuel to be taken into consideration is its eco-friendly
nature: Preferred SCS fuels are inexpensive, easy to handle, and with a limited environmental
impact [2].

Sucrose is an example of eco-friendly fuel and sucrose-assisted SCS has been successfully employed
in the literature for the synthesis of mixed oxides [7-10]. It is able to form chelates with most of the
metal cations, it has a noticeably high reducing power and it is able to modulate the morphology and
texture of the material. For example, Aliotta et al. [7], regarding the SCS of Cey §Smg 20O,, hypothesized
that sucrose is able to form a gel network where metal cations remain trapped in sucrose-metal cation
agglomerates, with a positive effect on the porosity, grain growth, and densification of the powders.
This specific template function of sucrose has been reported as well by other authors, highlighting
that, by using sucrose as a fuel, high surface area powders with low agglomeration degrees are
produced [7,8,10-13]. Sucrose is often used to create a reducing environment around a metal cation
and govern oxidation states [14]. As an additional advantage, in most cases, the use of sucrose allows
the combustion reaction to occur without adding ammonia as a pH regulator, which is necessary in the
case of traditional citric acid fuel [13]. However, sucrose-assisted combustion has also some drawbacks:
The amount of residual carbon is large and the excessive increase in the volume of the light-weight
as-burned powder causes powder loss outside of the reaction vessel [2].

PEG, a multifunctional polyether compound, is another eco-friendly fuel, often used, alone or
mixed with other organics, as a structure-directing agent and/or solvent in sol-gel synthesis [15-18].
It has been found that the variation of its molecular weight (MW) can modulate the microstructure and
porosity development of the produced material [16,18-20].

The mixed-fuels approach in SCS was demonstrated to positively affect the electrocatalytic
performance of perovskite-type materials in the oxygen reduction up to an order of magnitude [5,21-23].
PEG (MW = 20,000) was already employed in the compresence of sucrose in two previous papers
dealing with Bag5Sry5CoggFeg203-s powders as cathodes for solid oxide fuel cells prepared by
SCS [22,24]. Optimal features and electrochemical properties were reached by a mixture of sucrose
and PEG in a 1:2.5 molar ratio [22]. The addition of PEG is effective in extending the chelating ability
toward metal cations and the global efficiency of the combustion process, without altering too much
the reduction power of the mixture [22]. The use of the two fuels allowed achieving high reducing
power and high interaction of the fuel mixture with metal cations, favoring the stabilization of Co**
reduced state in Bag 55rg 5C0og sFe 2035 structure. The obtained oxygen vacancy-rich configuration
positively affected oxygen mobility and cathodic performance [22,24].

Perovskite-type compounds with ABOj; structure are a well-known class of functional materials
with a wide range of applicability in catalysis, electronics, optics, piezoelectrics, and other technological
fields [25-27]. The perovskite structure formation depends on the relative A-site and B-site cation
radius according to the Goldsmith tolerance factor, which is the most widely recognized criterion [28].
Electrocatalysts with ABOj; structure found application as electrode materials for electrochemical
devices like Intermediate Temperatures Solid Oxide Fuel Cells (IT-SOFC) [29-34], Symmetrical Solid
Oxide Fuel Cells (SSOFCs) [35-37], and electrolyzers [35,38,39]. The main requirements of electrode
materials are (i) to be able to adsorb oxygen from the air and catalytically reduce it (oxygen reduction
reaction) or to evolve oxygen and catalytically oxidize the fuel (oxygen evolution reaction), (ii) to
possess high mixed ionic and electronic conductivity, (iii) to be highly compatible with the electrolyte
in terms of thermal expansion coefficient (TEC), to avoid detrimental effects on the performances and
failures in long-term operations.

SrFeOs_; is a perovskite-type mixed oxide where iron has the expected oxidation state of +4,
whereas in most ABO3; perovskites, like pure and doped LaFeOj3, the common oxidation state at
B-site is +3 [38]. This compound is able to accommodate a large range of oxygen deficiencies, so that
some Fe3*, with a larger ionic radius, is formed to restore the electroneutrality [40,41]. The oxygen
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non-stoichiometry is an important factor to achieve high oxygen adsorption, oxygen mobility, and
high ionic conductivity [41,42]. Doped SrFeOs has been also studied as anodes and as electrodes in
electrolyzers due to their high stability in both oxidative and reductive environments [43].

It has been already reported that Cerium doping at the A-site of the Strontium Ferrates stabilizes
the perovskite cubic structure, with a solubility of about 15 mol% [40,44—46]. Cubic symmetry has been
found to enhance the ionic conductivity with respect to less symmetric structures as it maximizes the
overlapping between the 2p-orbitals of oxygen and d-orbitals of the transition metals at the B-site [47].
The oxygen deficiency 6 and the average valence state of B-site cation decrease by increasing cerium
concentration. It was also found that Cerium addition decreases the thermal expansion coefficient,
making it closer to that of a classical Gd-doped CeO; electrolyte [48]. Otherwise, when cobalt replaces
iron in the B-site of SrFeOs_s, the electronic conductivity improves, thanks to the intrinsic property
of Co, as well as the ionic conductivity [49]. In addition, by introducing Cobalt as dopant, the lattice
constant gradually decreases, limiting the distortion of the cubic structure [50]. Cobalt-containing
cathodes are known for their good electrochemical performances at low-intermediate operating
temperatures (20-700 °C) because of their excellent activity in the oxygen reduction reaction [38,51-53].
However, Cobalt-containing cathode materials exhibit high TEC values caused by the spin-state
transition associated with Co®* formation, leading to a mismatch with the electrolyte and a consequent
thermomechanical instability of the electrochemical cell [54]. The higher cost of cobalt itself further
limits the Co amount in the electrode formulations, encouraging new strategies leading to a good
compromise between efficiency and stability [55].

Cerium and/or Cobalt-doped SrFeOs_s perovskite-type oxides have been already studied as
cathode materials for IT-SOFCs [40,48,56], or oxygen membranes [46], although they have lower
performance than the most commonly used LaFeOs [57]. Doped SrFeOs; has been prepared by
solid-state synthesis as well as by SCS starting from citric acid as a fuel, but they have never been
prepared by using sucrose-assisted SCS.

In this work, Cerium and Cobalt-doped SrFeOs powders, with nominal composition Srg g5sCe 15Feq 67
Co0.3303-5 (SCFC), are produced for the first time by SCS assisted by sucrose (SCFC-S) or sucrose-polyethylene
glycol (PEG) mixtures, by using PEG with different molecular weight, i.e., 1,000 (SCFC-SP1) and 20,0000
(SCFC-5P20). The target was to find new correlations between the use of the PEG as a secondary fuel
and the structure, redox behavior, texture, morphology, and electrocatalytic performance of the selected
perovskite-type compound. The effect of two different PEG molecular weights was also investigated.

The most remarkable conclusion is that the addition of high molecular weight PEG to the
sucrose primary fuel leads to an improvement of both oxygen reduction and evolution processes.
This improvement was ascribed to the low-temperature formation of high valence iron and the
presence of nanostructured crystalline domains, which enhance the oxygen exchange rate in the
perovskite-type electrocatalysts.

2. Results and Discussion

2.1. The Combustion Process

The combustion process which took place during the synthesis of Srgg5Ceq 15Feq 67C00.3303-5
(SCFC) was relatively fast and intense for all the investigated samples. The efficiency of the process, in
terms of energy/time consumption, was measured by a thermocouple inserted in the reaction medium
and quantified by the temperature/time profiles displayed in Figure 1. In particular, three parameters
were chosen to quantify the combustion efficiency: The maximum temperature of the combustion
peak, the combustion duration (connected with the width of the peak), and the ignition temperature,
defined as the lowest temperature at which the mixture takes fire and continues to burn (Figure 1).
High maximum temperatures, short duration, and low ignition temperatures commonly denote a
great efficiency of the combustion process [2]. In Figure 1, the maximum temperature increases from
480 °C for SCFC-S to 605 °C for SCFC-5P20. The combustion duration decreases in the same direction
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from 78 s to 38 s, whereas the ignition temperature from 184 °C to 133 °C. Therefore, the association
sucrose-PEG, particularly for the highest PEG molecular weight, results in producing a more efficient
combustion process (Figure 1).
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Figure 1. Temperature-time profiles registered during the combustion process of the three investigated
samples, SCFC-S (green), SCFC-SP1 (red), and SCFC-SP20 (blue).

To explain these differences, it is worth to recall that the fuel has a triple function in the combustion
mixture, i.e., to be reducer, complexing and microstructural templating agent. According to the
propellant chemistry principles, the total reducing power of the PEG-containing fuel mixtures is
slightly higher than that related to the sucrose single fuel system and this might account for the higher
intensity of the process, as well as the stronger fuel-to-metal cations interaction. As pointed out in
the literature [18,58,59], PEG 20,000 has a stronger interaction with metal cations than PEG 1000 and
actually causes a more intense combustion process.

2.2. Structure and Microstructure of the Powders

Structure and microstructure of the samples were studied by X-ray powder Diffraction combined
with Rietveld refinement. The graphical Rietveld refinements of the three powder patterns are reported
in Figure 2a—c, with the respective enlargements in the 22-35° 20 region (d-f). Furthermore, the main
structural and microstructural parameters are summarized in Table S1, together with the corresponding
standard deviations obtained from Rietveld analysis. The powder prepared from sucrose single fuel
is a single perovskite phase, whereas about 2 wt. % of CeO, were detected outside the perovskite
structure in both the materials obtained from mixed fuels (Figure 2e,f and Table S1). According to the
phase composition reported in Table S1, it was calculated that in SCFC-SP1 and SCFC-S5P20 the amount
of Cerium entering the perovskite structure is about 13 mol%, which is 2 mol% lower than the nominal
composition (15 mol%). The structure symmetry of the perovskite-type phase, present in all the
examined patterns, is cubic (Pm-3m), in agreement with the ICDD reference pattern of a Cobalt-doped
SrFeO3; compound with very similar B-site composition (SrFe( yCop 303-PDFCard-04-016-4583). Partial
A-site substitution of Strontium by Cerium cations in the perovskite systems under study resulted
in a smaller cubic cell parameter, namely 3.866 A, instead of 3.870 A found for the above-mentioned
reference composition. This is probably due to a charge compensation of iron and cobalt cations at the
B-site. However, the cell parameter is in perfect agreement with the Cobalt-doped SrFeOs compound
with an identical chemical composition (prepared with citric acid as fuel) recently published as a
new entry in the ICDD database (GIA-Grant In Aid-2018-2019-I cycle-Editorial number: 108994). Cell
parameters of the three samples are comparable within the experimental standard deviation calculated
by the Rietveld program and according to the equal nominal composition of the powders (Table S1),
suggesting that the cations inside the three perovskites have equipollent oxidation states. The major
differences among the samples are observable in terms of microstrain, whereas the change in crystal
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size is not dramatic. In particular, the highest microstrain values were registered for the two SCFC-SP1
and SCFC-5P20 powders.
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Figure 2. (a—c) Graphical Rietveld refinement of XRD patterns for the three examined samples;
(d-f) enlargement of the graphical Rietveld fit in the angular range 22-35° with image of the refined
perovskite structure in d (Sr and Ce are green and pink, Fe and Co are gold and blue, O is red) and
indication of the CeO, phase formation in e and f.

Based on these outcomes, the different fuel-to-metal cation interactions and intensity of the
combustion process, provoked by different fuels, influences the composition as well as the structural
and microstructural properties. Indeed the addition of PEG seems to hinder the cerium entering
the perovskite (Figure 2), whereas sucrose as a single fuel favors the cerium introduction in the
perovskite framework if compared with citric acid [45]. Ce%* introduction in the iron perovskite forces
the Fe**-to-Fe3* reduction process to compensate for the charge increase. Therefore, cerium oxide
segregation in the samples prepared from sucrose-PEG mixtures is probably due to the hindering of
this process caused by the high stability of B-site species with a high oxidation state (see Section 2.5).
No segregated cobalt-containing compounds are detectable as cobalt enters the B-site of the ABO3
perovskite very easily, in agreement with the literature [48,60]. Concerning the crystal size values



Catalysts 2020, 10, 134 6 of 19

(Table S1), they are the result of a compensation between a stronger combustion process (in terms of
the maximum temperature parameter), which promotes the crystal sintering, and a shorter process
duration, which limits the crystal sintering. The higher microstrain values found for SCFC-SP1 and
SCFC-SP20 might account for the 1.7 wt% CeO, segregation, causing a slight charge imbalance in
the structure (Figure 2b,c). A very small fraction of Cobalt probably moved into segregated CeO,,
as demonstrated by the slight decrease of the cell parameter of CeO, from 5.411 (ICDD PDF card n°
00-004-0593) to 5.4099 + 0.0004 A (for SCFC-SP1) and 5.4078 + 0.0005 A (for SCFC-SP20), in agreement
with what has been reported in the literature for cobalt-ceria systems [61].

2.3. Textural Properties of the Powders

Figure 3a displays the N, adsorption/desorption isotherm (type IV) of one of the samples, namely
SCFC-5P20, as a representative example, whereas in Table S2 the textural parameters of all the samples
are reported. The isotherm of Figure 3a has a very small hysteresis at relatively high pressures
(p/po = 0.9), typical of SrFeOs-based powders with low mesoporosity [45]. All the examined powders
have low surface area values, comprised between 20 and 29 m?/g (Table S2). Inside this range, results
reported in Table S2 point out a clear decrease of porosity and surface area for the samples prepared
from mixed fuels, whereas the pore dimension increases with PEG addition to sucrose primary fuel, in
agreement with the literature [18]. The pore distribution of the same representative sample, SCFC-SP20,
is reported in Figure 3b, evidencing two pore size regions. The main porosity is in the range 2-10 nm,
whereas another minor contribution extends up to 35 nm (Figure 3b). This is in agreement with the
presence of hysteresis at high pressures (Figure 3a) and with the morphological features reported in
the next paragraph (Figure 4a).
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Figure 3. N, adsorption/desorption isotherm (a) and pore size distribution (b) of SCFC-SP20 as a
representative sample.

A value for the grain (dgpr) was also calculated from N, adsorption data by using the well-known
relationship between the surface area (Sggt) and grain size, i.e., dgg = 6/0XSggT [62], where the density
o was obtained by the Rietveld Refinement for this structure (5.769 g/cm3). From dggr, it was possible
to obtain the agglomeration degree, calculated as the ratio between the crystal size obtained from the
XRD and the grain size obtained from N, adsorption (Table 52). A mean value of 3 agglomerated
crystallites form the mean grain of SCFC-SP1 and SCFC-SP20 powders, whereas 2 agglomerated
crystallites form the mean grain of the SCFC-S powder. As also discussed in the next paragraph, a
stronger agglomeration occurs in SCFC-SP1 and SCFC-SP20 (Table S2).
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PN
5 SCFC-S

() (b)
Figure 4. (a) SEM; (b) TEM.
2.4. Morphological Properties of the Powders

A selection of images obtained by electron microscopy techniques is shown in Figure 4. SEM
analysis (Figure 4a) indicates the presence of flake-shaped aggregates composed by irregular
sub-micrometric spherical-like particles, forming void inter-particle space. The sintering of the
primary particles can be clearly evidenced. The agglomerate size appears more regular in the powders
prepared from mixed fuels. In Figure 4b TEM micrographs evidence the presence of different particle
aggregates at the nanometric scale, mostly roundish although some sharper edges are observable.
All systems resulted in extensively crystalline structures, although the crystalline fringe systems are
more extended in the order SCFC-SP20 < SCFC-S < SCFC-SP1. The agglomeration degree values
reported in Table S2 agree with the diameter observed in Figure 4a for SCFC-S (600-1000 nm) and for
SCFC-SP1 and SCFC-SP20 (600-2400 nm). Therefore, the addition of PEG to the combustion mixture
helps to produce a more regular grain size distribution at the expense of a slightly higher agglomeration.
The analysis of the fringe patterns confirmed that in all three samples there are reflections at 2.70, 2.20,
and 1.95 A that are easily attributable to the Srg g5Ceq 15Feq 67C003303-5 perovskite, in agreement with
the reflection obtained from the XRD pattern. Other reflections at 1.50, 2.41, 2.60, and 2.50 A were also
observed, probably due to other mixed phases, for instance, SrFe1,019 (reference card 01-080-1197)
and CoFe; Oy (reference card 01-079-1744) formed as impurities in the materials and not visible in the
diffraction patterns because they were only present in a very limited amount.

2.5. Redox Properties of the Powders

Temperature-programmed reduction experiments (TPR) give interesting information on the redox
properties of powders containing reducible cations. In Figure 5, the TPR results of the examined
samples are reported together with possible redox couples involved in the reactions, whereas the
corresponding experimental H, consumptions are listed in Table S3. As expected by their identical
nominal composition, all the samples show similar redox behavior and three main reduction phenomena
are distinguishable (Figure 5). However, the shifts observed in the positions and intensity of the peaks
in Figure 5 reflect some diversities in the chemical surrounding of the reducible cations.
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Figure 5. Temperature-programmed reduction experiment (TPR) results.

The reduction events in the low-temperature range (100-290 °C) can be ascribable to the presence
of a certain amount of B-site cations with higher oxidation state, i.e., Fe*t and Co?**, as also observed
by Carvalho et al., performing TGA experiments under Hy/N; flow on similar compounds with similar
results [63]. The presence of Fe*" is expected for a SrFeO;-based material, although the Fe** content
decreases by Ce-doping [40].

In the middle-temperature region (290 °C-580 °C), Co>* to Co?* and Co?* to Co’ reduction
processes occur. The theoretical H, consumption for the complete reduction of Co®* to Co? is 60.5 mL
H,/g, assuming that all the cobalt in the sample was present as Co>*. This value is about 20% higher
than the values registered for the 3 samples under study (Table S3), indicating that not all the cobalt is
found in the 3+ oxidation state.

In the high-temperature region (580 °C-1000 °C), Fe* to Fe** and Fe?* to Fe® reduction occurs
together with the Ce** to Ce3* reduction according to previous work [40]. Based on the nominal
composition Srg g5Ceq 15Feq 67C00.3303_5 and assuming that in the high-temperature range all the iron
is in the 3+ oxidation state, the theoretical H, consumption for the complete reduction of Fe3* to Fe
is 122.8 mL Hy/g. In addition, if all the cerium in the sample was present as Ce**, the theoretical
H, consumption for the complete reduction of Ce** to Ce>* would be 9.2 mL H,/g. Therefore, the
theoretical high-temperature H, consumption should be the sum of these contributions, i.e., 132.0 mL
H,/g. However, looking at Table S3, none of the samples consumes such amount of hydrogen in the
high-temperature range. For example, in the case of SCFC-S, the high-temperature consumption of
H, is about 9% smaller than the theoretical one (121.0 vs. 132.0 mL Hjy/g). This apparent discrepancy
is due to the incomplete Fe?* to Fe’ transformation, as observed for Ce-doped SrFeO; in a previous
study [40].

In the case of SCFC-SP1 and SCFC-SP20 powders, a higher percentage of highly oxidized species
is registered with respect to SCFC-S, at the expenses of the Fe** and Co®* species (Figure 5 and
Table S3). In addition, the signals SCFC-SP1 and SCFC-5P20 in the 580-1000 °C temperature range are
slightly shifted and reduction occurs at lower temperatures for SCFC-SP1, indicating that reducibility
of Fe3* is favored for this sample. The presence of Fe** in the perovskite structure should cause the
contraction of the cell parameter/volume due to the smaller ionic radius of Fe** with respect to Fe®*,
but the crystal cell sizes of the three materials before the TPR experiments (reported in Table S1) are
very similar. This suggests that high oxidation state cations are probably formed during the TPR
pre-treatment, in agreement with the TGA results discussed later. Actually, in this perspective, the
SCFC-SPx powders seem more susceptible than SCFC-S to be oxidized at T lower than 500 °C (during
the sample pre-treatment).

Total hydrogen consumption values reported in Table S3 are comparable. The slightly smaller
values registered for SCFC-SP1 and SCFC-SP20 are ascribable to the incomplete reduction of bulk
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CeO,, present in these samples as segregated phases. In fact, Ce** reduction in the bulk CeO, can
occur at T > 1000 °C, although it already starts at T < 1000 °C.

Another important factor for a good electrode performance is represented by the presence and
amount of oxygen vacancies as carriers of O~ and responsible for ionic conduction. Thermogravimetric
analysis was performed by saturating the strontium ferrate with oxygen and subjecting it to thermal
treatment under inert gas flow (see Materials and Methods section). The mass loss during this thermal
treatment is linked to the released oxygen and indicates the capability of the material to entrap oxygen
inits vacancies. Two different thermogravimetric procedures were adopted in this work, to evaluate the
influence of the pre-treatment on the oxygen capture/release, as reported in the Materials and Methods
section). In the first procedure, called here as “single step,” the mass loss of the sample is measured
under nitrogen at increasing temperatures. In the second procedure, called here as “multistep,” the
sample is subjected to different redox treatments under different conditions and the mass loss was
followed during all these steps. In Figure 6a, TGA profiles obtained by pre-treatment in N, are reported.
The percentages of the total oxygen release calculated as weight loss are 2.6% for SCFC-S, 1.7% for
SCFC-5P1, and 2.2% for SCFC-SP20. In these experimental conditions, oxygen vacancies are mostly
abundant in SCFC-S whereas they are very limited in SCFC-SP1. In all cases, the differences are
significant because always higher than the standard deviation (+5 wt%). Looking at Figure 6a, the
first weight loss occurring up to 450 °C is ascribable to the presence of x-O,, namely mobile oxygen
(strictly related to the vacancies), whereas over 450 °C also lattice oxygen (3-O; can be released.

100.0 feee_ N, 100.0 0,(21%)IN,
99.5 99.5
@ )
S~ 3=
™~ 99.0 5 9.0+
B 2
o] =l
— 985 — 985
E 5
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Figure 6. (a) Thermogravimetric analyses (TGA) under N, flow; (b) TGA under O, (21%)/N; flow
(step 3 of Figure S1).

It is worth knowing that a mass quadrupole, positioned downstream of the thermal treatment
for monitoring gaseous species evolution, allowed detecting a relevant amount of CO, released from
SCFC-SP20 during the pre-treatment. It is supposed that the observed CO; evolution is due to the
presence of oxygenated organic residues in the materials, probably derived from incomplete combustion
of PEG. The same residues are probably responsible for the surface area decrement observed in this
sample (Table S2), in agreement with the literature [64,65].

The multistep TGA procedure, whose step 3 is reported in Figure 6b, is particularly relevant
as it can describe the redox behavior of a powder subjected to isothermal and non-isothermal
oxidation-reduction cycles (see Materials and Methods). Similar experiments have been already used
in the literature for other systems [7]. The complete series of steps followed by this TGA procedure
and the relative weight losses are reported in Figure S1. Both the samples have a higher tendency to be
reduced than oxidized at 600 °C (compare step 5 and step 6 in Figure S1). However, SCFC-SP20 shows
a larger tendency to be oxidized at low temperatures than SCFC-SP1 (Figure 6 and Figure S1-step3).
This means that highly oxidized B-site species are stable at low temperatures, and their stability is
higher in SCFC-5P20. It is worth to remind that in the same sample the stronger interaction of the gel
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network with metal cations during the synthesis process produced a very peculiar morphology. These
results might have an importance during the operations of the electrochemical device, where materials
operate under frequent oxidation-reduction cycles. Furthermore, Figure 6b confirms that highly
oxidized species were formed during the short oxidative pre-treatment before the TPR experiment,
highlighting the importance of the sample pre-treatment, able to influence the ability of the materials
to interact, adsorb and desorb oxygen under specific experimental conditions. This is the first time that
a clear correlation between the redox behaviors and the electrocatalytic performance of a material can
be assessed, thanks to the type of multistep TGA experiment carried out. So far, the complexity of
the phenomenon hampered the definition of any kind of correlation. For instance, the morphology
observed in Figure 4b can be responsible for the increased reactivity of this sample toward the gas
phase at T below 500 °C. This is in agreement with the results of Royer et al. [66], who evidenced the
important role of morphology in the oxygen-involving processes for a perovskite exploited for CHy and
CO oxidation. Furthermore, in the same literature paper, it was highlighted that the capacity of oxygen
desorption or the cations reducibility could be well correlated with the catalytic activity only by taking
into account as well the specific conditions of the catalytic tests and of the sample pre-treatment [66].

2.6. Electrochemical Properties of the Powders Deposited on the Electrolyte in Half-Cell Configuration

The electro-catalytic performances of the above-characterized samples were tested and a commercial
LSCF cathode from Praxair, Inc. was used as a reference (Lag ¢Srg 4Fep §C0p 2035, 100% cubic perovskite,
surface area 11.19 m?/g). Figure 7 reports the overpotential measurements of specimens evaluated at
600 °C (a) and 800 °C (b).

. ks SCFC-SP20, i . il
600 °C 0.50 Oxygen evolution 800 °C 2.00 - LSCF Praxair SCFC.SP20 Oxygen evolution

1.50 +
SCFC-5P1

1
0.40 0.60

0.50 100 -0.60

Overpotential /v Overpotential / V

Current density / A cm2
Current density / Acm™

Oxygen reduction -0.50 Oxygen reduction -2.00

(@) (b)

Figure 7. Overpotential measured at 600 °C (a) and 800 °C (b) for the three samples under study in
comparison with a reference LSCF perovskite (Praxair).

All samples show asymmetrical trends in oxygen reduction and evolution, whereas the highest
symmetry is shown by the commercial LSFC. Among the three samples under study, SCFC-SPx has a
higher symmetrical behavior than SCFC-S and SCFC-SP20 is the most symmetrical one. Therefore,
oxygen evolution is slightly favored in comparison with the oxygen reduction and this indicates a
good behavior of the materials also as anode for IT-SOFC, as highlighted in the literature [37,43,67].
The commercial specimen shows the highest performances with the lowest overpotentials achieved
ie, 0.4 A cm2 at —0.34 V for the reduction reaction and 0.4 A cm™2 at 0.34 V for the evolution
reaction of oxygen (Figure 7a). However, it must be considered that both chemical composition and
structure of LSCF Praxair are different from the perovskites investigated in this work. The overall
best performance was achieved by SCFC-SP20 and the worst one by SCFC-SP1, with a maximum
difference of half order of magnitude. This result indicates that the local environment of the cations
plays a fundamental role in the electrochemical performance of cathode materials, although all the
samples have the same chemical composition. In Figure 7b, the overpotential curves evaluated at
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800 °C are depicted. A significant asymmetric behavior towards oxygen evolution and reduction
reactions is observed at 800 °C for both SCFC samples and LSCF Praxair. In particular, a significant
propensity at high current density towards the evolution of oxygen is reached. This indicates that, in
this mechanism, an important role may be played by the oxygen storage capability of the materials
under investigation. In particular, SCFC-S improves at high currents, since the oxygen diffusion is
easier because it has more charge carriers, as demonstrated by TGA results (Figure 6a), but far from the
zero current point is worse because it is more resistant (see also Figure 8 and discussion). Therefore,
also in these conditions (800 °C), SCFC-SP20 possesses improved performances with respect to the
other two electrocatalysts. In Figure 8, results about conductivity (o) are reported (Arrhenius plots).

6
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Figure 8. Electrical conductivity (Arrhenius plots) of the three samples under study in comparison
with a reference LSCF Praxair perovskite.

Coherently with overpotential measurements, SCFC-SP20 demonstrated the highest conductivity
and similar behavior to Praxair LSCF, whereas the worst performance was observed for SCFC-SP1,
especially at high temperatures. It can be concluded that SCFC-SP20 electrochemical behavior is
superior because it is more conductive. Its higher electrical conduction can be ascribed to two main
factors: Its ability to stabilize Fe** and its peculiar morphology, which favors the oxygen exchange
with the gas phase, both in the reduction and evolution reactions (Figure 4b). On the other hand, in
our particular case, porosity of the powder before the deposition onto the GDC electrolyte does not
seems to play a role in the cathode electrochemistry, considering that the most porous powder, SCFC-S,
is not the one with highest electrical conductivity (compare Table S2 with Figures 7 and 8).

The Arrhenius plot reported in Figure 8 indicates that SCFC-SP1 and SCFC-S were activated by
the lowest (0.63 eV) and the highest (0.73 eV) energy values, respectively, whereas SCF-SP20 has an
intermediate activation energy value (0.70 eV), similar to the GDC electrolyte (0.71 eV), and LSCF
Praxair has an activation energy of 0.66 eV. Activation energy values are directly related to the oxygen
vacancies mobility more than to the amount of oxygen vacancies itself. Therefore, it is postulated that
a higher oxygen vacancies mobility is attained by the sample with the smallest amount of oxygen
vacancies (see Figure 6a), where vacancy clustering is less probable. Vacancy clustering has been
already observed in the literature for similar perovskite-type compounds [68].

3. Materials and Methods

3.1. Powders Preparation

Scheme 1 describes the procedure used for the synthesis of the powders.
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Scheme 1. Procedure used for the solution combustion synthesis of the three investigated samples.

The same general procedure was used for the preparation of mixed oxide powders of
Srp85Ce.15Feg 67C003303-5 composition (SCFC), irrespective of the fuel. 1.7958 gr of Sr(NOj3),
(anhydrous, >99.97% Alfa Aesar GmbH & Co KG, Kalsruhe, Germany), 0.6503 gr of Ce(NO3)3-6H,O
(99.99%, Sigma-Aldrich & Co Saint Louis, MO 63103, USA), 0.9443 of Co(NO3), -6H,O (99.99%
Sigma-Aldrich & Co Saint Louis, MO 63103, USA), and 2.7227 gr of Fe(NOj3)3-9H,O (99.99%
Sigma-Aldrich & Co Saint Louis, MO 63103, USA ) were carefully weighted in the required proportions
to obtain about 2 g of final product, poured in a 1 L stainless steel beaker and dissolved in distilled water
(200 mL) under magnetic stirring. Proper amounts of ammonium nitrate (>99.5% BioXtra-Sigma-Aldrich
Chemie GmbH, Schnelldorf, Germany) and sucrose (Eridania, Italia S.P.A, Bologna, Italy) were then
added to the metal precursor solution as oxidant additive and propellant-template—complexant,
respectively. Two powders were synthesized by adding polyethylene glycol at different molecular
weights (PEG, MW 20,000 purum, Fluka Chemie, Buchs, Switzerland and PEG MW 1,000 Alfa Aesar
GmbH & Co KG, Kalsruhe, Germany) as secondary fuels. Taking into account only the primary fuel,
the fuel/metal cation molar ratio was set to 2.2, while the reducers/oxidizers ratio (®) was set to 2.1
(slightly over-stoichiometric). The water was left to evaporate from the precursor solution at the
controlled temperature of 80 °C under constant magnetic stirring until the formation of a homogeneous
sticky gel. The combustion reaction was triggered and initiated by setting the hotplate temperature
to around 300 °C (real temperature was about 210 °C). The as-burned powders were fired at higher
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temperatures in a muffle furnace (1000 °C/5 h) for the crystallization of the perovskite-type phase and
the elimination of any carbon residues derived from the combustion process. The sample prepared
from sucrose is labeled SCFC-S and those synthesized from sucrose+PEG1000 or PEG20000 will be
indicated as SCFC-SP1 and SCFC-SP20, respectively.

3.2. Physicochemical Characterization

The temperature—time profiles of the combustion process were recorded during the combustion
process by means of a K-type thermocouple (1.5 mm in diameter) coupled with a data logger (PICO
technology) with a sampling velocity of 20 bit per second and a computer with Picolog software.

X-ray diffraction (XRD) measurements were carried out on a Bruker-Siemens D5000 X-ray powder
diffractometer equipped with a Kristalloflex 760 X-ray generator (Bruker AXS GmbH, Karlsruhe, Germany)
and with a curved graphite monochromator using Cu Ka radiation (40 kV/30 mA). The 2 0 step size
was 0.03, the integration time was 20 s per step, and the 2 0 scan ranged from 10° to 130°. The powder
diffraction patterns were analyzed by Rietveld refinement using the GSAS package [69]. As a starting
model, we used a recently published reference structure with the same chemical composition but prepared
by a different fuel type (GIA-Grant In Aid-2018-2019-I cycle-Editorial number: 108994). A Chebyshev
polynomial function with 15 coefficients was chosen for the background and the Pseudo-Voight
function with the Finger, Cox & Jephcoat asymmetry correction was selected for the peak profile fitting.
In the structure refinement lattice constants, Debye-Waller factors, microstrain, and the full width at
half maximum (FWHM) were considered as variable parameters. From fitting results, the structural
parameters of the investigated compounds and, in particular, phase composition and the relative cell
edge lengths were obtained. An estimation of the crystal size values was obtained by the Scherrer
equation in agreement with the GSAS package procedure. The agreement factors (R values), Rp, wRp,
RF?, and x? were acceptable [70,71]. The standard deviation of the refined values for cell length, cell
volume, mean crystal size, microstrain, and weight percentage of phase were obtained from Rietveld
analysis and the values are reported in Table 52 and in the text along with the respective parameters.
The obtained Debye-Waller factors for the perovskite-type phase are in good agreement with literature.

Specific surface area (SSA) measurements and pore texture analyses were performed
using a Sorptomatic 1900 Instrument (Thermoquest Italia S.p.a., Milano, Italy), by physical
adsorption/desorption of N, at the temperature of liquid nitrogen (=196 °C). The samples were
pre-treated under vacuum at 250 °C for 3 h prior to the measurements. The specific surface area was
calculated by applying the BET method to the adsorption branch of the isotherm in the standard
pressure range of 0.05-0.30 p/p0 [72]. By analysis of the desorption branch, using the BJH calculation
method in the range 0.42 < p/p0 < 0.98, the mean pore diameter and cumulative pore volume were
obtained [73]. The total pore volume at p/p0 = 0.99 (single point of desorption branch) was also quoted.
The so obtained textural parameters were quoted with a precision of + 10%.

SEM measurements were performed using a scanning microscope ZEISS EVO 50 XVP (Carl
Zeiss AG, Oberkochen, Germany) equipped with a LaBg source and a secondary electron detector.
The samples prior to the SEM investigation were sputtered with 20 nm of a gold layer to avoid charging
effects using a Bal-tec SCDO050 sputter coater (Leica Biosystems Inc., Buffalo Grove, IL, USA)

High-Resolution Transmission Electron Microscopy (HRTEM) was performed using a JEOL JEM.
3010UHR instrument (JEOL USA Inc., Peabody, MA, USA) working at 300 kV equipped with a single
crystal LaBg source. The sample was dry-deposited on Cu “holey” carbon grids (200 mesh) for the
analysis. With regard to the analysis of the fringe patterns, values of dy were determined and
consequently attributed to indexed reference patterns of database ICDD (PDF-2 software). All the
powders were analyzed immediately after calcination treatment.

Reduction properties of the perovskite oxides were studied by temperature-programmed reduction
(TPR) measurements. Experiments were carried out with a Micromeritics Autochem 2910 apparatus
equipped with a thermal conductivity detector (TCD) (Micromeritics Instrument Corp., Norcross,
Georgia, U.S.A.). Before starting the analyses, the catalyst (ca. 100 mg) was pre-treated flowing a 5%
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vol O, in He gas mixture (30 mL min~1) at 500 °C (10 °C/min) for 10 min to clean the surface and then
cooling down in He flow (30 mL min~1) up to room temperature. A 5 vol% Hj in Ar gas mixture
(30 mL min~!) was used to reduce the sample by heating from room temperature to 1050 °C at the
rate of 10 °C min~!. The hydrogen consumption associated with the TPR profile was determined by
applying a calibration curve.

Thermogravimetric analyses (TGA) were performed with a TGA/DSC1 STAR system (Mettler
Toledo, Bristol, United Kingdom). Two types of experiment were performed by TGA:

(i) In the “single step” TGA experiment, the sample (10 mg) was pre-treated in Np (30 mL min~1)
at 750 °C for 1 h (step 1), then it was cooled down to room temperature in air (30 mL min~?) (step 2)
and purged with Nj (30 mL min~!) for 30 min (step 3). After that, the sample was again treated
under N, (30 mL min™) by heating (rate 5 °C/min) from room temperature up to 1100 °C (step 4).
Step 1 was performed to remove any adsorbed water, oxygen, or carbonate species; step 2 aimed to
saturate all the vacancies with oxygen; step 3 aimed to eliminate all the physisorbed oxygen species;
step 4, during which the removal of chemisorbed oxygen species occurred, was taken into account to
evaluate the oxygen vacancies content of the sample. The evolution of gaseous species (CO,, H,O, O,)
occurring during the above steps was monitored by online mass quadrupole (ThermostarTM, Balzers
Instruments, Vaduz, Liechtenstein).

(ii) In the “multistep” TGA experiment, the sample (10 mg) was pre-treated under air (30 mL
min-1) by heating from 25 to 100 °C (step 1), holding at 100 °C under airflow for 30 min (step 2), in
order to clean the surface and remove any water and CO, chemisorbed. After that, a sequence of
5 steps (step 3-7) carried out alternatively under oxygen and N, at a constant flow of 30 mL/min, was
started with the aim to simulate the typical operating temperature and redox cycles experienced by an
electrocatalytic material (Figure S1). In detail, the following steps were performed: The sample was
heated from 100 to 600 °C (heating ramp 10 °C/min) under oxygen (step 3), holding time at 600 °C for
30 min (step 4), then at the same temperature the gas atmosphere was switched to Ny for 30 min (step
5), and successively again to air for 30 min (step 6). Finally, under the same atmosphere, the sample
was cooled down under oxygen flow from 600 to 100 °C (step 7).

3.3. Electrochemical Characterization

A potentiostatical frequency-response analyzer equipped with 20 A booster (Autolab PGSTAT30,
Metrohm BV, Kanaalweg 29-G, 3526 KM Utrecht, The Netherlands) was employed and impedance spectra
were obtained in the frequency range from 10 mHz to 1 MHz, at 0 V cell voltage and with an applied AC-voltage
amplitude of 10 mV rms, using the same set-up, according to Dunyushkina et al. [74]. The experiments
were conducted by using a three-electrode cell supported on a commercial Gadolinium-doped ceria (CGO,
CeGdy20,, Praxair surface technologies, 1500 Polco Street, Indianapolis, IN 46222, USA) dense electrolyte
pellet of 300 microns thickness. 2 mg cm™2 of perovskite electrocatalyst were deposited in two different
areas of both sides of the electrolyte, with a Pt electrode (MaTecK GmbH, Im Langenbroich 20, D-52428
Julich, Germany) as a reference. After the deposition of the powder, a thermal treatment (1100 °C/2 h) under
static air was carried out to ensure good adhesion between electrode layers and electrolyte. The temperature
was controlled by a thermocouple (RS PRO) at a distance of 0.5 cm from the electrode. Electrochemical
measurements were realized under static air in the range 400-900 °C.

Overpotential measurements were performed through current-voltage (I-V curve) experiments
and considering the Ohmic constraint measured from the Electrochemical Impedance Spectroscopy
(EIS) spectra carried out at the same temperature. A commercial LSCF (Praxair surface technologies,
1500 Polco Street, Indianapolis, IN 46222, USA) was also tested under identical experimental conditions
as a reference material. For the electrochemical data analysis, two softwares supplied with the Autolab
PGSTAT30 were used (GPES e FRA).
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4. Conclusions

In this work, Cerium and Cobalt-doped SrFeO3 powders as electrocatalytic materials were
synthesized through the SCS assisted by a sucrose or sucrose—polyethylene glycol (PEG) mixtures,
using PEG with different molecular weight. The use of several complementary characterization
techniques allowed us to evidence the main features induced by the use of PEG and to identify some
important synthesis-structure-properties relationships.

PEG addition limits the cerium solubility in the Co-doped SrFeO; through the stabilization
of the highly oxidized B-site species, Fe** and Co**. These cationic species are easily formed at
about 350-400 °C under a moderately oxidative atmosphere. PEG with higher molecular weight is
more efficient in the stabilization of such highly oxidized cations. In addition, it creates a peculiar
environment favorable to improve the material activity, promoting the formation of powders with
200 nm crystallites and short crystalline domains of 5-10 nm, which are more effective in both the
oxidation and reduction processes at the interface with the gas phase. Similar conductivity values were
achieved by sample obtained by Sucrose-PEG 20000 fuel mixture in comparison with the commercial
Sr and Co-doped LaFeOs sample. On the contrary, more extended crystalline domains are visible in
the low molecular weight PEG-derived sample, whereas sucrose alone, with much less stabilization
efficiency towards highly oxidized cations, does not produce materials with the best electrochemical
performance, although it is able to produce higher surface area, porosity and oxygen-deficient powders.

Looking toward an optimization strategy of the cathode materials properties, these findings
highlight that the synthesis parameters—and especially the nature of the fuel—have a primary role, on a
par with the chemical composition. The obtained results established new connections between synthesis
conditions, structure, microstructure-morphology—texture, redox behavior, and electrochemical
properties, offering concrete strategies for the future optimization of the electrocatalytic materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/1/134/s1,
Table S1: Structural and microstructural parameters extracted from Rietveld Refinement of XRD data, Table S2:
Textural parameters calculated from N2 adsorption/desorption measurements, Table S3: Hydrogen consumptions
(ml/g) per range of temperatures and total hydrogen consumption calculated from temperature-programmed
reduction experiments, Figure S1: Experimental conditions used and weight loss variation in the second TGA
experiment title.
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