14 research outputs found

    Development of a Series of Kynurenine 3-Monooxygenase Inhibitors Leading to a Clinical Candidate for the Treatment of Acute Pancreatitis

    Get PDF
    Recently, we reported a novel role for KMO in the pathogenesis of acute pancreatitis (AP). A number of inhibitors of kynurenine 3-monooxygenase (KMO) have previously been described as potential treatments for neurodegenerative conditions and particularly for Huntington’s disease. However, the inhibitors reported to date have insufficient aqueous solubility relative to their cellular potency to be compatible with the intravenous (iv) dosing route required in AP. We have identified and optimized a novel series of high affinity KMO inhibitors with favorable physicochemical properties. The leading example is exquisitely selective, has low clearance in two species, prevents lung and kidney damage in a rat model of acute pancreatitis, and is progressing into preclinical development

    Development of a small molecule that corrects misfolding and increases secretion of Z α1 -antitrypsin.

    Get PDF
    Severe α1 -antitrypsin deficiency results from the Z allele (Glu342Lys) that causes the accumulation of homopolymers of mutant α1 -antitrypsin within the endoplasmic reticulum of hepatocytes in association with liver disease. We have used a DNA-encoded chemical library to undertake a high-throughput screen to identify small molecules that bind to, and stabilise Z α1 -antitrypsin. The lead compound blocks Z α1 -antitrypsin polymerisation in vitro, reduces intracellular polymerisation and increases the secretion of Z α1 -antitrypsin threefold in an iPSC model of disease. Crystallographic and biophysical analyses demonstrate that GSK716 and related molecules bind to a cryptic binding pocket, negate the local effects of the Z mutation and stabilise the bound state against progression along the polymerisation pathway. Oral dosing of transgenic mice at 100 mg/kg three times a day for 20 days increased the secretion of Z α1 -antitrypsin into the plasma by sevenfold. There was no observable clearance of hepatic inclusions with respect to controls over the same time period. This study provides proof of principle that "mutation ameliorating" small molecules can block the aberrant polymerisation that underlies Z α1 -antitrypsin deficiency

    Kynurenine–3–monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis

    Get PDF
    Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death1,2 Acute mortality from AP-MODS exceeds 20%3 and for those who survive the initial episode, their lifespan is typically shorter than the general population4. There are no specific therapies available that protect individuals against AP-MODS. Here, we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism5, is central to the pathogenesis of AP-MODS. We created a mouse strain deficient for Kmo with a robust biochemical phenotype that protected against extrapancreatic tissue injury to lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in levels of kynurenine pathway metabolites in vivo and afforded therapeutic protection against AP-MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS and open up a new area for drug discovery in critical illness

    Ketoprofen: release from, permeation across and rheology of simple gel formulations that simulate increasing dryness

    No full text
    The migration of ketoprofen through a series of simple gels that varied in solvent composition to simulate snapshots of a dynamically drying topical formulation was studied. Firstly, the release rate of ketoprofen was determined from formulations based on Cabosil and PEG 400, the proportion of which was varied to mimic progressively dryer states. Secondly, the apparent permeability of ketoprofen across the corresponding blank Cabosil gels was determined. Thirdly, the effect of macro viscosity on these data was probed by comparing permeation of ketoprofen across Cabosil and hydroxypropyl cellulose (HPC) gels of equal viscosity. Linear release profiles were produced for all formulations suggesting first-order release and the rate of ketoprofen liberated was inversely to the proportion of Cabosil, suggesting that the drier the film, the slower the rate of release. At the lowest level of thickener used (5%) the release rate was reduced to 45% of the control. At 25% the release rate was reduced to 24% of the control. The presence of the Cabosil had an even more dramatic effect on the apparent permeability of ketoprofen across the gels. At 5% Cabosil the apparent steady state flux was reduced to 4% of the control. At 25% the apparent steady state flux was reduced to < 1% of the control. Although the 0.5% HPC gel and the 1% Cabosil gel possessed identical macro viscosities, the permeation of ketoprofen through the HPC gel was almost double that of the Cabosil gel. The data from these experiments demonstrated that migration of active molecules through a gel is significantly affected by the amount of solvent present in, or lost from, the system. It is proposed that increased adsorption of active to the thickener plays a more important role than increased macro viscosity for reduced active release as the formulation becomes increasingly dry. Furthermore, such affects are profoundly influenced by the chemical nature of the thickener

    Development of a small molecule that corrects misfolding and increases secretion of Z α1‐antitrypsin

    No full text
    Abstract Severe α1‐antitrypsin deficiency results from the Z allele (Glu342Lys) that causes the accumulation of homopolymers of mutant α1‐antitrypsin within the endoplasmic reticulum of hepatocytes in association with liver disease. We have used a DNA‐encoded chemical library to undertake a high‐throughput screen to identify small molecules that bind to, and stabilise Z α1‐antitrypsin. The lead compound blocks Z α1‐antitrypsin polymerisation in vitro, reduces intracellular polymerisation and increases the secretion of Z α1‐antitrypsin threefold in an iPSC model of disease. Crystallographic and biophysical analyses demonstrate that GSK716 and related molecules bind to a cryptic binding pocket, negate the local effects of the Z mutation and stabilise the bound state against progression along the polymerisation pathway. Oral dosing of transgenic mice at 100 mg/kg three times a day for 20 days increased the secretion of Z α1‐antitrypsin into the plasma by sevenfold. There was no observable clearance of hepatic inclusions with respect to controls over the same time period. This study provides proof of principle that “mutation ameliorating” small molecules can block the aberrant polymerisation that underlies Z α1‐antitrypsin deficiency

    Fragment-Based Approach to the Development of an Orally Bioavailable Lactam Inhibitor of Lipoprotein-Associated Phospholipase A2 (Lp-PLA<sub>2</sub>)

    No full text
    Lp-PLA<sub>2</sub> has been explored as a target for a number of inflammation associated diseases, including cardiovascular disease and dementia. This article describes the discovery of a new fragment derived chemotype that interacts with the active site of Lp-PLA<sub>2</sub>. The starting fragment hit was discovered through an X-ray fragment screen and showed no activity in the bioassay (IC<sub>50</sub> > 1 mM). The fragment hit was optimized using a variety of structure-based drug design techniques, including virtual screening, fragment merging, and improvement of shape complementarity. A novel series of Lp-PLA<sub>2</sub> inhibitors was generated with low lipophilicity and a promising pharmacokinetic profile
    corecore