94 research outputs found
A Semi-Parametric Approach to the Detection of Non-Gaussian Gravitational Wave Stochastic Backgrounds
Using a semi-parametric approach based on the fourth-order Edgeworth
expansion for the unknown signal distribution, we derive an explicit expression
for the likelihood detection statistic in the presence of non-normally
distributed gravitational wave stochastic backgrounds. Numerical likelihood
maximization exercises based on Monte-Carlo simulations for a set of large tail
symmetric non-Gaussian distributions suggest that the fourth cumulant of the
signal distribution can be estimated with reasonable precision when the ratio
between the signal and the noise variances is larger than 0.01. The estimation
of higher-order cumulants of the observed gravitational wave signal
distribution is expected to provide additional constraints on astrophysical and
cosmological models.Comment: 26 pages, 3 figures, to appear in Phys. Rev.
On the valuation and incentive effects of executive cash bonus contracts
Executive compensation packages are often valued in an inconsistent manner: while employee stock options (ESOs) are typically valued ex-ante, cash bonuses are valued ex-post. This renders the existing valuation models of employee compensation packages theoretically unsatisfactory and, potentially, empirically distortive. In this paper, we propose an option-based framework for ex-ante valuation of cash bonus contracts. After obtaining closed-form expressions for ex-ante values of several frequently used types of bonus contracts, we utilize them to explore the e¤ects that the shape of a bonus contract has on the executive’s attitude toward risk-taking. We, also, study pay-performance sensitivity of such contracts. We show that the terms of a bonus contract can dramatically impact both risk-taking behavior as well as pay-performance incentives. Several testable predictions are made, and venues of future research outlined.Executive compensation, cash bonus, incentives, risk-taking behavior
Quantum delay in the time-of-arrival of free falling atoms
We use a stochastic representation of measured trajectories to derive an
exact analytical expression for the probability distribution of the
time-of-arrival (TOA) for a free falling particle, as well as approximate
expressions for its mean value and standard-deviation in the semiclassical
regime. We predict the existence of a positive shift between the
semiclassical TOA () and the classical TOA ()
for a particle of mass falling in a constant and uniform gravitational
field with zero initial velocity, with a value given by where is the width of the initial Gaussian
wavepacket, and is the distance between the initial position of the source
and that of the detector. We discuss the implications of this result on the
weak equivalence principle in the quantum regime.Comment: 5 pages + 2 pages supplementary material. 1 Figure + 1 Tabl
On the mutual exclusiveness of time and position in quantum physics and the corresponding uncertainty relation for free falling particles
The uncertainty principle is one of the characteristic properties of quantum
theory, where it signals the incompatibility of two types of measurements. In
this paper, we argue that measurements of time-of-arrival at position
and position at time are mutually exclusive for a quantum system,
each providing complementary information about the state of that system. For a
quantum particle of mass falling in a uniform gravitational field , we
show that the corresponding uncertainty relation can be expressed as . This uncertainty relationship can be
taken as evidence of the presence of a form of epistemic incompatibility in the
sense that preparing the initial state of the system so as to decrease the
measured position uncertainty will lead to an increase in the measured
time-of-arrival uncertainty. These findings can be empirically tested in the
context of ongoing or forthcoming experiments on measurements of
time-of-arrival for free-falling quantum particles.Comment: 7 pages, 2 figures, 2 pages supplementary materia
Forward-Looking Measures of Higher-Order Dependencies with an Application to Portfolio Selection
This paper provides implied measures of higher-order dependencies between assets. The measures exploit only forward-looking information from the options market and can be used to construct an implied estimator of the covariance, co-skewness, and co-kurtosis matrices of asset returns. We implement the estimator using a sample of US stocks. We show that the higher-order dependencies vary heavily over time and identify which driving them. Furthermore, we run a portfolio selection exercise and show that investors can benefit from the better out-of-sample performance of our estimator compared to various historical benchmark estimators. The benefit is up to seven percent per year
Le fond gravitationnel stochastique : méthodes de détection en régimes non-Gaussiens
The new generation of interferometers should allow us to detect stochastic gravitational wave backgrounds that are expected to arise from a large number of random, independent, unresolved events of astrophysical or cosmological origin. Most detection methods for gravitational waves are based upon the assumption of Gaussian gravitational wave stochastic background signals and noise processes. Our main objective is to improve the methods that can be used to detect gravitational backgrounds in the presence of non-Gaussian distributions. We first maintain the assumption of Gaussian noise distributions so as to better focus on the impact of deviations from normality of the signal distribution in the context of the standard cross-correlation detection statistic. Using a 4th-order Edgeworth expansion of the unknown density for the signal and noise distributions, we first derive an explicit expression for the non-Gaussian likelihood ratio statistic, which is obtained as a function of the variance, but also skewness and kurtosis of the unknown signal and noise distributions. We use numerical procedures to generate maximum likelihood estimates for the gravitational wave distribution parameters for a set of symmetric heavy-tailed distributions, and we find that the fourth cumulant can be estimated with reasonable precision when the ratio between the signal and the noise variances is larger than 1%, which should be useful for analyzing the constraints on astrophysical and cosmological models. In a second step, we analyze the efficiency of the standard cross-correlation statistic in situations that also involve non-Gaussian noise distributions.Les méthodes standard de détection du fond gravitationnel stochastique reposent sur l'hypothèse simplificatrice selon laquelle sa distribution ainsi que celle du bruit des détecteurs sont Gaussiennes. Nous proposons dans cette thèse des méthodes améliorées de détection du fond gravitationnel stochastique qui tiennent compte explicitement du caractère non-Gaussien de ces distributions. En utilisant un développement d'Edgeworth, nous obtenons dans un premier temps une expression analytique pour la statistique du rapport de vraisemblance en présence d'une distribution non Gaussienne du fonds gravitationnel stochastique. Cette expression généralise l'expression habituelle lorsque le coefficient de symétrie et le coefficient d'aplatissement de la distribution du fond stochastique sont non nuls. Sur la base de simulations stochastiques pour différentes distributions symétriques présentant des queues plus épaisses que celles de la distribution Gaussienne, nous montrons par ailleurs que le 4eme cumulant peut-être estimé avec une précision acceptable lorsque le ratio signal à bruit est supérieur à 1%, ce qui devrait permettre d'apporter des contraintes supplémentaires intéressantes sur les valeurs de paramètres issus des modèles astrophysiques et cosmologiques. Dans un deuxième temps, nous cherchons à analyser l'impact sur les méthodes de détection du fond gravitationnel stochastique de déviations par rapport à la normalité dans la distribution du bruit des détecteurs
Stochastic gravitational wave background : detection methods in non-Gaussian regimes
Les méthodes standard de détection du fond gravitationnel stochastique reposent sur l'hypothèse simplificatrice selon laquelle sa distribution ainsi que celle du bruit des détecteurs sont Gaussiennes. Nous proposons dans cette thèse des méthodes améliorées de détection du fond gravitationnel stochastique qui tiennent compte explicitement du caractère non-Gaussien de ces distributions. En utilisant un développement d'Edgeworth, nous obtenons dans un premier temps une expression analytique pour la statistique du rapport de vraisemblance en présence d'une distribution non Gaussienne du fonds gravitationnel stochastique. Cette expression généralise l'expression habituelle lorsque le coefficient de symétrie et le coefficient d'aplatissement de la distribution du fond stochastique sont non nuls. Sur la base de simulations stochastiques pour différentes distributions symétriques présentant des queues plus épaisses que celles de la distribution Gaussienne, nous montrons par ailleurs que le 4eme cumulant peut-être estimé avec une précision acceptable lorsque le ratio signal à bruit est supérieur à 1%, ce qui devrait permettre d'apporter des contraintes supplémentaires intéressantes sur les valeurs de paramètres issus des modèles astrophysiques et cosmologiques. Dans un deuxième temps, nous cherchons à analyser l'impact sur les méthodes de détection du fond gravitationnel stochastique de déviations par rapport à la normalité dans la distribution du bruit des détecteurs.The new generation of interferometers should allow us to detect stochastic gravitational wave backgrounds that are expected to arise from a large number of random, independent, unresolved events of astrophysical or cosmological origin. Most detection methods for gravitational waves are based upon the assumption of Gaussian gravitational wave stochastic background signals and noise processes. Our main objective is to improve the methods that can be used to detect gravitational backgrounds in the presence of non-Gaussian distributions. We first maintain the assumption of Gaussian noise distributions so as to better focus on the impact of deviations from normality of the signal distribution in the context of the standard cross-correlation detection statistic. Using a 4th-order Edgeworth expansion of the unknown density for the signal and noise distributions, we first derive an explicit expression for the non-Gaussian likelihood ratio statistic, which is obtained as a function of the variance, but also skewness and kurtosis of the unknown signal and noise distributions. We use numerical procedures to generate maximum likelihood estimates for the gravitational wave distribution parameters for a set of symmetric heavy-tailed distributions, and we find that the fourth cumulant can be estimated with reasonable precision when the ratio between the signal and the noise variances is larger than 1%, which should be useful for analyzing the constraints on astrophysical and cosmological models. In a second step, we analyze the efficiency of the standard cross-correlation statistic in situations that also involve non-Gaussian noise distributions
Fixed-income securities : dynamic methods for interest rate risk pricing and hedging
xv, 254 p. : ill. ; 24 cm
- …