25 research outputs found

    Complete Genome Sequence of \u3ci\u3eBurkholderia phymatum\u3c/i\u3e STM815T , a Broad Host Range and Efficient Nitrogen-Fixing Symbiont of \u3ci\u3eMimosa\u3c/i\u3e Species

    Get PDF
    Burkholderia phymatum is a soil bacterium able to develop a nitrogen-fixing symbiosis with species of the legume genus Mimosa, and is frequently found associated specifically with Mimosa pudica. The type strain of the species, STM 815T , was isolated from a root nodule in French Guiana in 2000. The strain is an aerobic, motile, non-spore forming, Gram-negative rod, and is a highly competitive strain for nodulation compared to other Mimosa symbionts, as it also nodulates a broad range of other legume genera and species. The 8,676,562 bp genome is composed of two chromosomes (3,479,187 and 2,697,374 bp), a megaplasmid (1,904,893 bp) and a plasmid hosting the symbiotic functions (595,108 bp)

    Rare copy number variants contribute to congenital left-sided heart disease

    Get PDF
    Left-sided congenital heart disease (CHD) encompasses a spectrum of malformations that range from bicuspid aortic valve to hypoplastic left heart syndrome. It contributes significantly to infant mortality and has serious implications in adult cardiology. Although left-sided CHD is known to be highly heritable, the underlying genetic determinants are largely unidentified. In this study, we sought to determine the impact of structural genomic variation on left-sided CHD and compared multiplex families (464 individuals with 174 affecteds (37.5%) in 59 multiplex families and 8 trios) to 1,582 well-phenotyped controls. 73 unique inherited or de novo CNVs in 54 individuals were identified in the left-sided CHD cohort. After stringent filtering, our gene inventory reveals 25 new candidates for LS-CHD pathogenesis, such as SMC1A, MFAP4, and CTHRC1, and overlaps with several known syndromic loci. Conservative estimation examining the overlap of the prioritized gene content with CNVs present only in affected individuals in our cohort implies a strong effect for unique CNVs in at least 10% of left-sided CHD cases. Enrichment testing of gene content in all identified CNVs showed a significant association with angiogenesis. In this first family-based CNV study of left-sided CHD, we found that both co-segregating and de novo events associate with disease in a complex fashion at structural genomic level. Often viewed as an anatomically circumscript disease, a subset of left-sided CHD may in fact reflect more general genetic perturbations of angiogenesis and/or vascular biology

    Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future

    Get PDF
    Purpose Age-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future. Design Meta-analysis of prevalence data. Participants A total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe. Methods AMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV). Main Outcome Measures Prevalence of early and late AMD, BCVA, and number of AMD cases. Results Prevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%–5.0%) in those aged 55–59 years to 17.6% (95%

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    Constraints on cosmic strings using data from the first Advanced LIGO observing run

    Get PDF
    Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension Gμ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider

    Christians At Ghên-Chiang Fu

    No full text

    Systematic study of the low-lying electric dipole strength in Sn isotopes and its astrophysical implications

    No full text
    The γ-ray strength functions (GSFs) and nuclear level densities (NLDs) below the neutron threshold have been extracted for Sn111-113,116-122,124 from particle-γ coincidence data with the Oslo method. The evolution of bulk properties of the low-lying electric dipole response has been investigated on the basis of the Oslo GSF data and results of a recent systematic study of electric- and magnetic dipole strengths in even-even Sn isotopes with relativistic Coulomb excitation. The obtained GSFs reveal a resonance-like peak on top of the tail of the isovector giant dipole resonance centered at ≈8 MeV and exhausting ≈2% of the classical Thomas-Reiche-Kuhn (TRK) sum. For mass numbers ≥118 the data suggest also a second peak centered at ≈6.5 MeV. It corresponds to 0.1%-0.5% of the TRK sum rule and shows an approximate linear increase with the mass number. In contrast with predictions of the relativistic quasiparticle random-phase and time-blocking approximation calculations, no monotonic increase in the total low-lying E1 strength was observed in the experimental data from Sn111 to Sn124, demonstrating rather similar strength distributions in these nuclei. The Oslo GSFs and NLDs were further used as inputs to constrain the cross sections and Maxwellian-averaged cross sections of (n,γ) reactions in the Sn isotopic chain using talys. The obtained results agree well with other available experimental data and the recommended values from the JINA REACLIB, BRUSLIB, and KADoNiS libraries. Despite relatively small exhausted fractions of the TRK sum rule, the low-lying electric dipole strength makes a noticeable impact on the radiative neutron-capture cross sections in stable Sn isotopes. Moreover, the experimental Oslo inputs for the Sn121,123(n,γ)Sn122,124 reactions were found to affect the production of Sb in the astrophysical i process, providing new constraints on the uncertainties of the resulting chemical abundances from multizone low-metallicity asymptotic giant branch stellar models.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore