24 research outputs found

    Ground truth parameters for Padre Island, Texas

    Get PDF
    Flight tests of infrared spectrometer for ground truth parameters for Padre Island, Texa

    Compile two photomaps of the state of Nevada

    Get PDF
    There are no author-identified significant results in this report

    The use of tire rubber in the production of high-performance concrete

    Get PDF
    The advances in concrete technology lead to the search for alternative materials that provide improvements in concrete properties while at the same time collaborating with sustainable practices in construction. In this study, the influence of the incorporation of waste tire rubber on the mechanical properties of high-performance concrete was discussed. The waste rubber from the tire retreading process was used in partial substitution of the fine aggregate (sand) in the percentages of 7.5%, 15% and 30% with respect to the mass of the sand. For the characterization of the concrete, the following tests were carried out: water absorption, void index, specific density, compressive strength, flexural tensile strength, modulus of elasticity and microscopy analysis. The incorporation of rubber as aggregate in high-performance concrete proved to be promising for the production of a structural concrete with special characteristics, besides collaborating with the proper disposal of waste tires651110114sem informaçã

    Osteochondral transplantation using autografts from the upper tibio-fibular joint for the treatment of knee cartilage lesions

    Get PDF
    Purpose Treatment of large cartilage lesions of the knee in weight-bearing areas is still a controversy and challenging topic. Autologous osteochondral mosaicplasty has proven to be a valid option for treatment but donor site morbidity with most frequently used autografts remains a source of concern. This study aims to assess clinical results and safety profile of autologous osteochondral graft from the upper tibio-fibular joint applied to reconstruct symptomatic osteochondral lesions of the knee. Methods Thirty-one patients (22 men and 9 women) with grade 4 cartilage lesions in the knee were operated by mosaicplasty technique using autologous osteochondral graft from the upper tibio-fibular joint, between 1998 and 2006. Clinical assessment included visual analog scale (VAS) for pain and Lysholm score. All patients were evaluated by MRI pre- and post-operatively regarding joint congruency as good, fair (inferior to 1 mm incongruence), and poor (incongruence higher than 1 mm registered in any frame). Donor zone status was evaluated according to specific protocol considering upper tibio-fibular joint instability, pain, neurological complications, lateral collateral ligament insufficiency, or ankle complaints. Results Mean age at surgery was 30.1 years (SD 12.2). In respect to lesion sites, 22 were located in weight-bearing area of medial femoral condyle, 7 in lateral femoral condyle, 1 in trochlea, and 1 in patella. Mean follow-up was 110.1 months (SD 23.2). Mean area of lesion was 3.3 cm 2 (SD 1.7), and a variable number of cylinders were used, mean 2.5 (SD 1.3). Mean VAS score improved from 47.1 (SD 10.1) to 20.0 (SD 11.5); p = 0.00. Similarly, mean Lysholm score increased from 45.7 (SD 4.5) to 85.3 (SD 7.0); p = 0.00. The level of patient satisfaction was evaluated, and 28 patients declared to be satisfied/very satisfied and would do surgery again, while 3 declared as unsatisfied with the procedure and would not submit to surgery again. These three patients had lower clinical scores and kept complaints related to the original problem but unrelated to donor zone. MRI score significantly improved at 18–24 months comparing with pre-operative (p = 0.004). No radiographic or clinical complications related to donor zone with implication in activity were registered. Conclusions This work corroborates that mosaicplasty technique using autologous osteochondral graft from the upper tibio-fibular joint is effective to treat osteochondral defects in the knee joint. No relevant complications related to donor zone were registered

    Rubberized mortar: the influence of aggregate granulometry in mechanical resistances and acoustic behavior

    No full text
    The incorporation of rubber waste from tires into cementitious elements has become an increasingly recurrent practice, since this activity fosters the idea of sustainable construction. The use of rubber as an aggregate in the mortar promotes the correct destination of this residue, becoming inert, promoting the hygiene of the environment. Many researchers have studied the physical and mechanical behavior of rubberized mortar. However, particle geometry analyzes are scarce. This research aims to study the incorporation of rubber tire residues in mortars in two grades of granulometry, i.e., spheroids (S) and fibers (F), replacing the conventional aggregate in 7.5%, 15% and 30%. Density, compressive strength, flexural strength, microstructure and sound attenuation tests were performed. Rubber mortars showed a reduction in density of up to 34.6% compared to conventional mortar, consequently resulting in a reduction of approximately 4 times in compressive strength. However, there is a better acoustic behavior, especially when the rubber is used in fiber format, which presents 29.70% and 42.54% of attenuation enhancement for 15% of fiber waste tire rubber, considering P- and S-waves, respectively20024825

    The use of tire rubber in the production of high-performance concrete

    No full text
    Abstract The advances in concrete technology lead to the search for alternative materials that provide improvements in concrete properties while at the same time collaborating with sustainable practices in construction. In this study, the influence of the incorporation of waste tire rubber on the mechanical properties of high-performance concrete was discussed. The waste rubber from the tire retreading process was used in partial substitution of the fine aggregate (sand) in the percentages of 7.5%, 15% and 30% with respect to the mass of the sand. For the characterization of the concrete, the following tests were carried out: water absorption, void index, specific density, compressive strength, flexural tensile strength, modulus of elasticity and microscopy analysis. The incorporation of rubber as aggregate in high-performance concrete proved to be promising for the production of a structural concrete with special characteristics, besides collaborating with the proper disposal of waste tires
    corecore