1,980 research outputs found
The effects of solid rocket motor effluents on selected surfaces and solid particle size, distribution, and composition for simulated shuttle booster separation motors
A series of three tests was conducted using solid rocket propellants to determine the effects a solid rocket plume would have on thermal protective surfaces (TPS). The surfaces tested were those which are baselined for the shuttle vehicle. The propellants used were to simulate the separation solid rocket motors (SSRM) that separate the solid rocket boosters (SRB) from the shuttle launch vehicle. Data cover: (1) the optical effects of the plume environment on spacecraft related surfaces, and (2) the solid particle size, distribution, and composition at TPS sample locations
Characterization of a 5-eV neutral atomic oxygen beam facility
An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm
New techniques for imaging and analyzing lung tissue.
The recent technological revolution in the field of imaging techniques has provided pathologists and toxicologists with an expanding repertoire of analytical techniques for studying the interaction between the lung and the various exogenous materials to which it is exposed. Analytical problems requiring elemental sensitivity or specificity beyond the range of that offered by conventional scanning electron microscopy and energy dispersive X-ray analysis are particularly appropriate for the application of these newer techniques. Electron energy loss spectrometry, Auger electron spectroscopy, secondary ion mass spectrometry, and laser microprobe mass analysis each offer unique advantages in this regard, but also possess their own limitations and disadvantages. Diffraction techniques provide crystalline structural information available through no other means. Bulk chemical techniques provide useful cross-checks on the data obtained by microanalytical approaches. It is the purpose of this review to summarize the methodology of these techniques, acknowledge situations in which they have been used in addressing problems in pulmonary toxicology, and comment on the relative advantages and disadvantages of each approach. It is necessary for an investigator to weigh each of these factors when deciding which technique is best suited for any given analytical problem; often it is useful to employ a combination of two or more of the techniques discussed. It is anticipated that there will be increasing utilization of these technologies for problems in pulmonary toxicology in the decades to come
Proton Therapy for Head and Neck Adenoid Cystic Carcinoma: Initial Clinical Outcomes
Background
The purpose of this study was to report outcomes of proton therapy in head and neck adenoid cystic carcinoma.
Methods
We conducted a retrospective analysis of 26 patients treated between 2004 and 2012. Twenty patients (77%) had base of skull involvement; 19 (73%) were treated for initial disease and 7 (27%) for recurrent disease. Twenty patients were treated postoperatively, 6 after biopsy alone and 24 had positive margins or gross residual disease. Median dose delivered was 72 Gy (relative biological effectiveness [RBE]).
Results
Median follow-up was 25 months (range, 7–50 months). The 2-year overall survival was 93% for initial disease course and 57% for recurrent disease (p = .19). The 2-year local control was 95% for initial disease and 86% for recurrent disease (p = .48). The 2-year distant metastatic rate was 25%. Late toxicity of grade 0 or 1 was seen in 17 patients, grade 2 in 5, grade 3 in 2, grade 4 in 1, and grade 5 in 1.
Conclusion
Initial outcomes of proton therapy are encouraging. Longer follow-up is required
A Model for Patchy Reconnection in Three Dimensions
We show, theoretically and via MHD simulations, how a short burst of
reconnection localized in three dimensions on a one-dimensional current sheet
creates a pair of reconnected flux tubes. We focus on the post-reconnection
evolution of these flux tubes, studying their velocities and shapes. We find
that slow-mode shocks propagate along these reconnected flux tubes, releasing
magnetic energy as in steady-state Petschek reconnection. The geometry of these
three-dimensional shocks, however, differs dramatically from the classical
two-dimensional geometry. They propagate along the flux tube legs in four
isolated fronts, whereas in the two-dimensional Petschek model, they form a
continuous, stationary pair of V-shaped fronts.
We find that the cross sections of these reconnected flux tubes appear as
teardrop shaped bundles of flux propagating away from the reconnection site.
Based on this, we argue that the descending coronal voids seen by Yohkoh SXT,
LASCO, and TRACE are reconnected flux tubes descending from a flare site in the
high corona, for example after a coronal mass ejection. In this model, these
flux tubes would then settle into equilibrium in the low corona, forming an
arcade of post-flare coronal loops.Comment: 27 pages plus 16 figure
Easy on that trigger dad: a study of long term family photo retrieval
We examine the effects of new technologies for digital photography on people's longer term storage and access to collections of personal photos. We report an empirical study of parents' ability to retrieve photos related to salient family events from more than a year ago. Performance was relatively poor with people failing to find almost 40% of pictures. We analyze participants' organizational and access strategies to identify reasons for this poor performance. Possible reasons for retrieval failure include: storing too many pictures, rudimentary organization, use of multiple storage systems, failure to maintain collections and participants' false beliefs about their ability to access photos. We conclude by exploring the technical and theoretical implications of these findings
Compartmentalized PDE4A5 signaling impairs hippocampal synaptic plasticity and long-term memory
Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific phosphodiesterase 4 (PDE4) family, which contains >25 different isoforms, play a key role in determining spatial cAMP degradation so as to orchestrate compartmentalized cAMP signaling in cells. Each isoform binds to a different set of protein complexes through its unique N-terminal domain, thereby leading to targeted degradation of cAMP in specific intracellular compartments. However, the functional role of specific compartmentalized PDE4 isoforms has not been examined in vivo. Here, we show that increasing protein levels of the PDE4A5 isoform in mouse hippocampal excitatory neurons impairs a long-lasting form of hippocampal synaptic plasticity and attenuates hippocampus-dependent long-term memories without affecting anxiety. In contrast, viral expression of a truncated version of PDE4A5, which lacks the unique N-terminal targeting domain, does not affect long-term memory. Further, overexpression of the PDE4A1 isoform, which targets a different subset of signalosomes, leaves memory undisturbed. Fluorescence resonance energy transfer sensor-based cAMP measurements reveal that the full-length PDE4A5, in contrast to the truncated form, hampers forskolin-mediated increases in neuronal cAMP levels. Our study indicates that the unique N-terminal localization domain of PDE4A5 is essential for the targeting of specific cAMP-dependent signaling underlying synaptic plasticity and memory. The development of compounds to disrupt the compartmentalization of individual PDE4 isoforms by targeting their unique N-terminal domains may provide a fruitful approach to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling
- …