650 research outputs found

    Determination of an Open/Closed Vent Volcanic System

    Get PDF
    Through the observation of infrasound signal, it is possible to determine the status of an open/closed vent volcanic system. In this study, twenty-four hour long infrasound signals from four receivers located ~3.5 km away from Showa Crater are utilized in characterizing the time distribution between eruption events at Sakurajima volcano in Japan. The application of filtering, stacking, correlation, and comparison of receivers highlights vent activity among other sources of infrasound. Presented are various methods and procedures used in determination of vent status. Simplification of this system to a binary signal of open or closed vent status allows for the probability distribution of interevent time durations to be modeled. Benefits of modelling the time distribution of hazardous events are to maintain safety among nearby communities and to further the communal understanding of the Earth as a system. In further application, these model parameters can be applied to probabilistic determination of impending eruption events as well as a reference for monitoring changes in the system

    Using SamplePoint to Determine Vegetation Percent Cover in a Sagebrush Steppe Ecosystem

    Get PDF
    Multi-temporal satellite imagery can be used to map species level vegetation across large areas. This is due to the fact that plants have unique spectral signatures in the electromagnetic spectrum and satellite imagery collects data from specific areas of the electromagnetic spectrum in different wavelengths (or bands) and over different time periods. However, in order to use satellite imagery to map vegetation using spectral signatures, vegetation information from the ground is needed to “train and validate” the satellite imagery. One of the ways of collecting vegetation information is using signature plots. Signature plots are high resolution local images collected with a digital camera of ground vegetation in a specific environment. These signature plots can then be analyzed using a computer software called SamplePoint in order to produce a percent vegetation cover for different vegetation species for the area which the camera covers. The percent vegetation cover information can then be used to train and validate the satellite imagery. SamplePoint offers a unique way to expand small physical observations to large landscapes

    Downregulation of Fzd6 and Cthrc1 and upregulation of olfactory receptors and protocadherins by dietary beta-carotene in lungs of Bcmo1-/- mice.

    Get PDF
    An ongoing controversy exists on beneficial versus harmful effects of high beta-carotene (BC) intake, especially for the lung. To elucidate potential mechanisms, we studied effects of BC on lung gene expression. We used a beta-carotene 15,15'-monooxygenase 1 (Bcmo1) knockout mouse (Bcmo1-/-) model, unable to convert BC to retinoids, and wild-type mice (Bcmo1+/+) mice to dissect the effects of intact BC from effects of BC metabolites. As expected, BC supplementation resulted in a higher BC accumulation in lungs of Bcmo1-/- mice than in lungs of Bcmo1+/+ mice. Whole mouse genome transcriptome analysis on lung tissue revealed that more genes were regulated in Bcmo1-/- mice than Bcmo1+/+ mice upon BC supplementation. Frizzled homolog 6 (Fzd6) and collagen triple helix repeat containing 1 (Cthrc1) were significantly downregulated (fold changes -2.99 and -2.60, respectively, false discovery rate <0.05) by BC in Bcmo1-/-. Moreover, many olfactory receptors and many members of the protocadherin family were upregulated. Since both olfactory receptors and protocadherins have an important function in sensory nerves and Fzd6 and Cthrc1 are important in stem cell development, we hypothesize that BC might have an effect on the highly innervated pulmonary neuroendocrine cell (PNEC) cluster. PNECs are highly associated with sensory nerves and are important cells in the control of stem cells. A role for BC in the innervated PNEC cluster might be of particular importance in smoke-induced carcinogenesis since PNEC-derived lung cancer is highly associated with tobacco smoke

    R91W mutation in Rpe65 leads to milder early-onset retinal dystrophy due to the generation of low levels of 11-cis-retinal

    Get PDF
    RPE65 is a retinal pigment epithelial protein essential for the regeneration of 11-cis-retinal, the chromophore of cone and rod visual pigments. Mutations in RPE65 lead to a spectrum of retinal dystrophies ranging from Leber's congenital amaurosis to autosomal recessive retinitis pigmentosa. One of the most frequent missense mutations is an amino acid substitution at position 91 (R91W). Affected patients have useful cone vision in the first decade of life, but progressively lose sight during adolescence. We generated R91W knock-in mice to understand the mechanism of retinal degeneration caused by this aberrant Rpe65 variant. We found that in contrast to Rpe65 null mice, low but substantial levels of both RPE65 and 11-cis-retinal were present. Whereas rod function was impaired already in young animals, cone function was less affected. Rhodopsin metabolism and photoreceptor morphology were disturbed, leading to a progressive loss of photoreceptor cells and retinal function. Thus, the consequences of the R91W mutation are clearly distinguishable from an Rpe65 null mutation as evidenced by the production of 11-cis-retinal and rhodopsin as well as by less severe morphological and functional disturbances at early age. Taken together, the pathology in R91W knock-in mice mimics many aspects of the corresponding human blinding disease. Therefore, this mouse mutant provides a valuable animal model to test therapeutic concepts for patients affected by RPE65 missense mutation

    In conditions of limited chromophore supply rods entrap 11-cis-retinal leading to loss of cone function and cell death

    Get PDF
    RPE65 is a retinoid isomerase required for the production of 11-cis-retinal, the chromophore of both cone and rod visual pigments. We recently established an R91W knock-in mouse strain as homologous animal model for patients afflicted by this mutation in RPE65. These mice have impaired vision and can only synthesize minute amounts of 11-cis-retinal. Here, we investigated the consequences of this chromophore insufficiency on cone function and pathophysiology. We found that the R91W mutation caused cone opsin mislocalization and progressive geographic cone atrophy. Remnant visual function was mostly mediated by rods. Ablation of rod opsin corrected the localization of cone opsin and improved cone retinal function. Thus, our analyses indicate that under conditions of limited chromophore supply rods and cones compete for 11-cis-retinal that derives from regeneration pathway(s) which are reliant on RPE65. Due to their higher number and the instability of cone opsin, rods are privileged under this condition while cones suffer chromophore deficiency and degenerate. These findings reinforce the notion that in patients any effective gene therapy with RPE65 needs to target the cone-rich macula directly to locally restore the cones' chromophore supply outside the reach of rod

    Selective inhibition of carotenoid cleavage dioxygenases : phenotypic effects on shoot branching

    Get PDF
    Members of the carotenoid cleavage dioxygenase family catalyse the oxidative cleavage of carotenoids at various chain positions, leading to the formation of a wide range of apocarotenoid signalling molecules. To explore the functions of this diverse enzyme family, we have used a chemical genetic approach to design selective inhibitors for different classes of carotenoid cleavage dioxygenase. A set of 18 arylalkyl-hydroxamic acids was synthesised in which the distance between an iron-chelating hydroxamic acid and an aromatic ring was varied; these compounds were screened as inhibitors of four different enzyme classes, either in vitro or in vivo. Potent inhibitors were found that selectively inhibited enzymes that cleave carotenoids at the 9,10 position; 50% inhibition was achieved at sub-micromolar concentrations. Application of certain inhibitors at 100 microM to Arabidopsis node explants or whole plants led to increased shoot branching, consistent with inhibition of 9,10-cleavage

    Aster La Vista: Unraveling the Biochemical Basis of Carotenoid Homeostasis in the Human Retina

    Get PDF
    Carotenoids play pivotal roles in vision as light filters and precursor of chromophore. Many vertebrates also display the colorful pigments as ornaments in bare skin parts and feathers. Proteins involved in the transport and metabolism of these lipids have been identified including class B scavenger receptors and carotenoid cleavage dioxygenases. Recent research implicates members of the Aster protein family, also known as GRAM domain-containing (GRAMD), in carotenoid metabolism. These multi-domain proteins facilitate the intracellular movement of carotenoids from their site of cellular uptake by scavenger receptors to the site of their metabolic processing by carotenoid cleavage dioxygenases. We provide a model how the coordinated interplay of these proteins and their differential expression establishes carotenoid distribution patterns and function in tissues, with particular emphasis on the human retina

    Crosstalk between cAMP and MAP Kinase Signaling in the Regulation of Cell Proliferation

    Full text link
    Hormonal stimulation of cyclic adenosine monophosphate (cAMP) and the cAMP-dependent protein kinase PKA regulates cell growth by multiple mechanisms. A hallmark of cAMP is its ability to stimulate cell growth in many cell types while inhibiting cell growth in others. In this review, the cell type-specific effects of cAMP on the mitogen-activated protein (MAP) kinase (also called extracellular signal-regulated kinase, or ERK) cascade and cell proliferation are examined. Two basic themes are discussed. First, the capacity of cAMP for either positive or negative regulation of the ERK cascade accounts for many of the cell type-specific actions of cAMP on cell proliferation. Second, there are several specific mechanisms involved in the inhibition or activation of ERKs by cAMP. Emerging new data suggest that one of these mechanisms might involve the activation of the GTPase Rap1, which can activate or inhibit ERK signaling in a cell-specific manner

    Biofortified yellow cassava and vitamin A status of Kenyan children: a randomized controlled trial.

    Get PDF
    BACKGROUND: Whereas conventional white cassava roots are devoid of provitamin A, biofortified yellow varieties are naturally rich in β-carotene, the primary provitamin A carotenoid. OBJECTIVE: We assessed the effect of consuming yellow cassava on serum retinol concentration in Kenyan schoolchildren with marginal vitamin A status. DESIGN: We randomly allocated 342 children aged 5-13 y to receive daily, 6 d/wk, for 18.5 wk 1) white cassava and placebo supplement (control group), 2) provitamin A-rich cassava (mean content: 1460 μg β-carotene/d) and placebo supplement (yellow cassava group), and 3) white cassava and β-carotene supplement (1053 μg/d; β-carotene supplement group). The primary outcome was serum retinol concentration; prespecified secondary outcomes were hemoglobin concentration and serum concentrations of β-carotene, retinol-binding protein, and prealbumin. Groups were compared by using ANCOVA, adjusting for inflammation, baseline serum concentrations of retinol and β-carotene, and stratified design. RESULTS: The baseline prevalence of serum retinol concentration <0.7 μmol/L and inflammation was 27% and 24%, respectively. For children in the control, yellow cassava, and β-carotene supplement groups, the mean daily intake of cassava was 378, 371, and 378 g, respectively, and the total daily supply of provitamin A and vitamin A from diet and supplements was equivalent to 22, 220, and 175 μg retinol, respectively. Both yellow cassava and β-carotene supplementation increased serum retinol concentration by 0.04 μmol/L (95% CI: 0.00, 0.07 μmol/L); correspondingly, serum β-carotene concentration increased by 524% (448%, 608%) and 166% (134%, 202%). We found no effect on hemoglobin concentration or serum concentrations of retinol-binding protein and prealbumin. CONCLUSIONS: In our study population, consumption of yellow cassava led to modest gains in serum retinol concentration and a large increase in β-carotene concentration. It can be an efficacious, new approach to improve vitamin A status. This study was registered with clinicaltrials.gov as NCT01614483

    Mutation increasing β-carotene concentrations does not adversely affect concentrations of essential mineral elements in pepper fruit

    Get PDF
    <div><p>Vitamin and mineral deficiencies are prevalent in human populations throughout the world. Vitamin A deficiency affects hundreds of millions of pre-school age children in low income countries. Fruits of pepper (<i>Capsicum annuum</i> L.) can be a major dietary source of precursors to Vitamin A biosynthesis, such as β-carotene. Recently, pepper breeding programs have introduced the orange-fruited (<i>of</i>) trait of the mutant variety Oranzheva kapiya, which is associated with high fruit β-carotene concentrations, to the mutant variety Albena. In this manuscript, concentrations of β-carotene and mineral elements (magnesium, phosphorus, sulphur, potassium, zinc, calcium, manganese, iron and copper) were compared in fruit from P31, a red-fruited genotype derived from the variety Albena, and M38, a genotype developed by transferring the orange-fruited mutation (<i>of</i>) into Albena. It was observed that fruit from M38 plants had greater β-carotene concentration at both commercial and botanical maturity (4.9 and 52.7 mg / kg fresh weight, respectively) than fruit from P31 plants (2.3 and 30.1 mg / kg fresh weight, respectively). The mutation producing high β-carotene concentrations in pepper fruits had no detrimental effect on the concentrations of mineral elements required for human nutrition.</p></div
    corecore