14 research outputs found

    Chicken γδ T cells proliferate upon IL-2 and IL-12 treatment and show a restricted receptor repertoire in cell culture

    Get PDF
    In chickens, γδ T cells represent a large fraction of peripheral T cells; however, their function remains largely unknown. Here, we describe the selective in vitro expansion of γδ T cells from total splenocytes by stimulation with the cytokines IL-2 and IL-12. Under these conditions, γδ T cells proliferated preferentially and reached frequencies of >95% within three weeks. Although IL-2 alone also triggered proliferation, an increased proliferation rate was observed in combination with IL-12. Most of the expanded cells were γδ TCR and CD8 double-positive. Splenocytes sorted into TCR1+CD8+, TCR1highCD8−, and TCR1lowCD8− subsets proliferated well upon dual stimulation with IL-2/IL-12, indicating that none of the three γδ T cell subsets require bystander activation for proliferation. TCR1+CD8+ cells maintained CD8 surface expression during stimulation, whereas CD8− subpopulations showed varied levels of CD8 upregulation, with the highest upregulation observed in the TCR1high subset. Changes in the γδ T-cell receptor repertoire during cell culture from day 0 to day 21 were analyzed by next-generation sequencing of the γδ variable regions. Overall, long-term culture led to a restricted γ and δ chain repertoire, characterized by a reduced number of unique variable region clonotypes, and specific V genes were enriched at day 21. On day 0, the δ chain repertoire was highly diverse, and the predominant clonotypes differed between animals, while the most frequent γ-chain clonotypes were shared between animals. However, on day 21, the most frequent clonotypes in both the γ and δ chain repertoires were different between animals, indicating that selective expansion of dominant clonotypes during stimulation seems to be an individual outcome. In conclusion, IL-2 and IL-12 were sufficient to stimulate the in vitro outgrowth of γδ T cells. Analyses of the TCR repertoire indicate that the culture leads to an expansion of individual T cell clones, which may reflect previous in vivo activation. This system will be instrumental in studying γδ T cell function

    Chicken γδ T cells proliferate upon IL-2 and IL-12 treatment and show a restricted receptor repertoire in cell culture

    Get PDF
    In chickens, γδ T cells represent a large fraction of peripheral T cells; however, their function remains largely unknown. Here, we describe the selective in vitro expansion of γδ T cells from total splenocytes by stimulation with the cytokines IL-2 and IL-12. Under these conditions, γδ T cells proliferated preferentially and reached frequencies of >95% within three weeks. Although IL-2 alone also triggered proliferation, an increased proliferation rate was observed in combination with IL-12. Most of the expanded cells were γδ TCR and CD8 double-positive. Splenocytes sorted into TCR1+CD8+, TCR1highCD8−, and TCR1lowCD8− subsets proliferated well upon dual stimulation with IL-2/IL-12, indicating that none of the three γδ T cell subsets require bystander activation for proliferation. TCR1+CD8+ cells maintained CD8 surface expression during stimulation, whereas CD8− subpopulations showed varied levels of CD8 upregulation, with the highest upregulation observed in the TCR1high subset. Changes in the γδ T-cell receptor repertoire during cell culture from day 0 to day 21 were analyzed by next-generation sequencing of the γδ variable regions. Overall, long-term culture led to a restricted γ and δ chain repertoire, characterized by a reduced number of unique variable region clonotypes, and specific V genes were enriched at day 21. On day 0, the δ chain repertoire was highly diverse, and the predominant clonotypes differed between animals, while the most frequent γ-chain clonotypes were shared between animals. However, on day 21, the most frequent clonotypes in both the γ and δ chain repertoires were different between animals, indicating that selective expansion of dominant clonotypes during stimulation seems to be an individual outcome. In conclusion, IL-2 and IL-12 were sufficient to stimulate the in vitro outgrowth of γδ T cells. Analyses of the TCR repertoire indicate that the culture leads to an expansion of individual T cell clones, which may reflect previous in vivo activation. This system will be instrumental in studying γδ T cell function

    Cassini’s CDA observes a variety of dust populations just outside Saturn’s main rings

    Get PDF
    Before the end of its mission, the Cassini spacecraft orbited Saturn in a series of highly inclined elliptical ‘Ring-Grazing’ orbits (RGO). During the RGO, the spacecraft passed repeatedly through the ring plane outside the F ring, near the orbits of Janus and Epimetheus, at an average relative speed of ∼20 km s–1. For the first time, Cassini’s Cosmic Dust Analyser (CDA) directly sampled dust particles from this region. Here, we analyse the compositions of dust grains sampled within ±15 min relative to nine ring plane crossings of the RGO. The compositions of most analysed RGO grains are similar to those of E ring ice grains, implying that the E ring extends to within at least 2.45 Saturn radii (RS) of Saturn. The compositional distribution of these grains point at a similar average period (decades) since ejection from Enceladus as of particles in the outer E ring (beyond 8 RS). Higher fractions of larger grains are found near the orbits of Janus and Epimetheus, which probably represent ejecta from these moons. Most of these grains have compositions similar to the background E ring grains, indicating that E ring material is coating the surfaces of Janus and Epimetheus. We also report the detection of several types of mineral grains on prograde orbits, one of which, a water ice/silicate mixture, has never been observed by CDA elsewhere. These mineral grains appear to have a different origin from the E ring, and may arise from nearby moons, the F ring, or main rings

    Iron depletion in mineral dust grains from Saturn’s main rings

    Get PDF
    During the Grand Finale orbits, Cassini’s Cosmic Dust Analyzer (CDA) recorded in situ mass spectra of ice and mineral nanodust grains ejected from Saturn’s main rings falling into the planet’s atmosphere. We present a compositional analysis of the mineral dust fraction employing a spectral deconvolution method to determine the elemental composition of these grains. The results indicate a relatively homogenous composition of exclusively Mg-rich silicates, with Mg, Si, and Ca close to CI chondritic abundances but a significant depletion in Fe and only traces of organic material at best. The Fe depletion becomes even more pronounced when compared to Fe-rich interplanetary dust particles encountered by CDA in the Saturnian system, which are assumed to contaminate and darken the main rings over time. We discuss potential explanations for the depletion, from which we favour compositional alteration of the infalling dust grains by impact-triggered chemistry in combination with dynamical selection effects and instrumental bias as the most plausible ones. This might cause an accumulation of Fe in the main rings over time, most likely in the form of oxides

    DataSheet_1_Chicken γδ T cells proliferate upon IL-2 and IL-12 treatment and show a restricted receptor repertoire in cell culture.docx

    No full text
    In chickens, γδ T cells represent a large fraction of peripheral T cells; however, their function remains largely unknown. Here, we describe the selective in vitro expansion of γδ T cells from total splenocytes by stimulation with the cytokines IL-2 and IL-12. Under these conditions, γδ T cells proliferated preferentially and reached frequencies of >95% within three weeks. Although IL-2 alone also triggered proliferation, an increased proliferation rate was observed in combination with IL-12. Most of the expanded cells were γδ TCR and CD8 double-positive. Splenocytes sorted into TCR1+CD8+, TCR1highCD8−, and TCR1lowCD8− subsets proliferated well upon dual stimulation with IL-2/IL-12, indicating that none of the three γδ T cell subsets require bystander activation for proliferation. TCR1+CD8+ cells maintained CD8 surface expression during stimulation, whereas CD8− subpopulations showed varied levels of CD8 upregulation, with the highest upregulation observed in the TCR1high subset. Changes in the γδ T-cell receptor repertoire during cell culture from day 0 to day 21 were analyzed by next-generation sequencing of the γδ variable regions. Overall, long-term culture led to a restricted γ and δ chain repertoire, characterized by a reduced number of unique variable region clonotypes, and specific V genes were enriched at day 21. On day 0, the δ chain repertoire was highly diverse, and the predominant clonotypes differed between animals, while the most frequent γ-chain clonotypes were shared between animals. However, on day 21, the most frequent clonotypes in both the γ and δ chain repertoires were different between animals, indicating that selective expansion of dominant clonotypes during stimulation seems to be an individual outcome. In conclusion, IL-2 and IL-12 were sufficient to stimulate the in vitro outgrowth of γδ T cells. Analyses of the TCR repertoire indicate that the culture leads to an expansion of individual T cell clones, which may reflect previous in vivo activation. This system will be instrumental in studying γδ T cell function.</p

    Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion

    No full text
    The reactivity of aluminium compounds is dominated by their electron deficiency and consequent electrophilicity; these compounds are archetypal Lewis acids (electron-pair acceptors). The main industrial roles of aluminium, and classical methods of synthesizing aluminium–element bonds (for example, hydroalumination and metathesis), draw on the electron deficiency of species of the type AlR3 and AlCl31,2. Whereas aluminates, [AlR4]−, are well known, the idea of reversing polarity and using an aluminium reagent as the nucleophilic partner in bond-forming substitution reactions is unprecedented, owing to the fact that low-valent aluminium anions analogous to nitrogen-, carbon- and boron-centred reagents of the types [NX2]−, [CX3]− and [BX2]− are unknown3,4,5. Aluminium compounds in the +1 oxidation state are known, but are thermodynamically unstable with respect to disproportionation. Compounds of this type are typically oligomeric6,7,8, although monomeric systems that possess a metal-centred lone pair, such as Al(Nacnac)Dipp (where (Nacnac)Dipp = (NDippCR)2CH and R = tBu, Me; Dipp = 2,6-iPr2C6H3), have also been reported9,10. Coordination of these species, and also of (η5-C5Me5)Al, to a range of Lewis acids has been observed11,12,13, but their primary mode of reactivity involves facile oxidative addition to generate Al(III) species6,7,8,14,15,16. Here we report the synthesis, structure and reaction chemistry of an anionic aluminium(I) nucleophile, the dimethylxanthene-stabilized potassium aluminyl [K{Al(NON)}]2 (NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene). This species displays unprecedented reactivity in the formation of aluminium–element covalent bonds and in the C–H oxidative addition of benzene, suggesting that it could find further use in both metal–carbon and metal–metal bond-forming reactions.peerReviewe

    Ice Giants — The Return of the Rings

    No full text
    International audiencePlanetary rings are a multifaceted player in the system. Recent advances about Saturn’s rings argue that ring science at the ice giants, with magnetospheric and atmospheric sciences, are essential in advancing our knowledge about solar system evolution, the evolution of the moons and Ocean Worlds, and phenomena observed in the ice giant systems
    corecore