1,158 research outputs found
Vacuum phototriodes for the CMS electromagnetic calorimeter endcap
The measurement of scintillation light from the lead tungstate crystals of the Compact Muon Solenoid (CMS) electromagnetic calorimeter (ECAL) poses a substantial technical challenge, particularly in the endcap regions, where the radiation levels are highest. The photodetectors must be fast, sensitive, radiationhard, and operate with significant internal gain in a magnetic field of 4 Tesla. The measured performance characteristics of the first batches of series production vacuum phototriodes (VPT), developed to satisfy the needs of CMS, will be described
Fluorescence based real time monitoring of fouling in process chromatography
A real time monitoring of fouling in liquid chromatography has been presented. The versatility of the approach has been proven by successful implementation in three case studies with an error <1%. The first application demonstrates the monitoring of protein A ligand density and foulant concentration for assessing performance of protein A chromatography resin during purification of monoclonal antibodies. The observations have been supported from LC-MS/MS studies that were independently performed. The second application involves monitoring of foulant deposition during multimode cation exchange chromatography based purification of human serum albumin. Finally, in the third application, monitoring of foulants during multimodal hydrophobic interaction chromatography of recombinant human granulocyte colony stimulating factor is demonstrated. In all three cases, it is observed that the fluorescence intensity consistently increases with resin reuse as more foulants are deposited over time. The proposed approach can be readily used for real time monitoring of fouling and process control
The response to high magnetic fields of the vacuum phototriodes for the compact muon solenoid endcap electromagnetic calorimeter
The endcap electromagnetic calorimeter of the Compact Muon Solenoid (CMS) detects particles with the dense fast scintillator lead tungstate (PbWO4). Due to the low light yield of this scintillator photodetectors with internal gain are required. Silicon avalanche photodiodes cannot be used in the endcap region due to the intense neutron flux. Following an extensive R&D programme 26 mm diameter single-stage photomultipliers (vacuum phototriodes) have been chosen as the photodetector in the endcap region. The first 1400 production devices are currently being evaluated following recent tests of a pre-production batch of 500 tubes. Tubes passing our acceptance tests have responses, averaged over the angular acceptance of the endcap calorimeter, corresponding to the range 20 to 55 electrons per MeV deposited in PbWO4. These phototriodes operate, with a typical gain of 10, in magnetic fields up to 4T.PPARC, EC(INTAS-CERN scheme 99-424
Recommended from our members
Once upon a time, there was a fabulous funambulist: What children learn about the “high-level” vocabulary they encounter while listening to stories
Previous research has shown that listening to stories supports vocabulary growth in preschool and school-aged children and that lexical entries for even very difficult or rare words can be established if these are defined when they are first introduced. However, little is known about the nature of the lexical representations children form for the words they encounter while listening to stories, or whether these are sufficiently robust to support the child’s own use of such ‘high-level’ vocabulary. This study explored these questions by administering multiple assessments of children’s knowledge about a set of newly-acquired vocabulary. Four- and 6-year-old children were introduced to nine difficult new words (including nouns, verbs and adjectives) through three exposures to a story read by their class teacher. The story included a definition of each new word at its first encounter. Learning of the target vocabulary was assessed by means of two tests of semantic understanding – a forced choice picture-selection task and a definition production task – and a grammaticality judgment task, which asked children to choose between a syntactically-appropriate and syntactically-inappropriate usage of the word. Children in both age groups selected the correct pictorial representation and provided an appropriate definition for the target words in all three word classes significantly more often than they did for a matched set of non-exposed control words. However, only the older group was able to identify the syntactically-appropriate sentence frames in the grammaticality judgment task. Further analyses elucidate some of the components of the lexical representations children lay down when they hear difficult new vocabulary in stories and how different tests of word knowledge might overlap in their assessment of these components
Biochemical parameters of silver catfish (Rhamdia quelen) after transport with eugenol or essential oil of Lippia alba added to the water
The transport of live fish is a routine practice in aquaculture and constitutes a considerable source of stress to the animals. The addition of anesthetic to the water used for fish transport can prevent or mitigate the deleterious effects of transport stress. This study investigated the effects of the addition of eugenol (EUG) (1.5 or 3.0 mu L L-1) and essential oil of Lippia alba (EOL) (10 or 20 mu L L-1) on metabolic parameters (glycogen, lactate and total protein levels) in liver and muscle, acetylcholinesterase activity (AChE) in muscle and brain, and the levels of protein carbonyl (PC), thiobarbituric acid reactive substances (TBARS) and nonprotein thiol groups (NPSH) and activity of glutathione-S-transferase in the liver of silver catfish (Rhamdia quelen; Quoy and Gaimard, 1824) transported for four hours in plastic bags (loading density of 169.2 g L-1). The addition of various concentrations of EUG (1.5 or 3.0 mu L L-1) and EOL (10 or 20 mu L L-1) to the transport water is advisable for the transportation of silver catfish, since both concentrations of these substances increased the levels of NPSH antioxidant and decreased the TBARS levels in the liver. In addition, the lower liver levels of glycogen and lactate in these groups and lower AChE activity in the brain (EOL 10 or 20 mu L L-1) compared to the control group indicate that the energetic metabolism and neurotransmission were lower after administration of anesthetics, contributing to the maintenance of homeostasis and sedation status.Fundacao de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS/PRONEX) [10/0016-8]; Conselho Nacional de Pesquisa e Desenvolvimento Cientifico (CNPq) [470964/2009-0]; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES); CNPqinfo:eu-repo/semantics/publishedVersio
Work domain modeling of human-automation interaction for in-vehicle automation
Automated driving systems are deployed on public roads with little empirical support for the dominant justifications of enhanced safety and enhanced productivity. Furthermore, development of automated driving systems has been piecemeal rather than systematic while research on driver-automation interaction has relied on individual analysis of accidents and on observational studies of driving behavior in a simulator or on the road. In this paper, we apply Work Domain Analysis to develop a more systematic and comprehensive model of automated driving. We use a strategy of layering the driving automation onto the resulting Abstraction-Decomposition Space for manual driving to mimic the existing design strategy of introducing automation to take over driving functions previously the responsibility of the human driver. Our analysis shows that automation does not unequivocally supports dominant driving values. Furthermore, our analysis revealed subtle interdependencies between human and technological functions. We conclude that an Abstraction Decomposition Space offers a systematic view of driver-automation interaction that can suggest new insights for automation design.</p
The energy consumption mechanisms of a power-split hybrid electric vehicle in real-world driving
With increasing costs of fossil fuels and intensified environmental awareness, low carbon vehicles, including hybrid electric vehicles (HEVs), are becoming more popular for car buyers due to their lower running costs. HEVs are sensitive to the driving conditions under which they are used however, and real-world driving can be very different to the legislative test cycles. On the road there are higher speeds, faster accelerations and more changes in speed, plus additional factors that are not taken into account in laboratory tests, all leading to poorer fuel economy. Future trends in the automotive industry are predicted to include a large focus on increased hybridisation of passenger cars in the coming years, so this is an important current research area. The aims of this project were to determine the energy consumption of a HEV in real-world driving, and investigate the differences in this compared to other standard drive cycles, and also compared to testing in laboratory conditions.
A second generation Toyota Prius equipped with a GPS (Global Positioning System) data logging system collected driving data while in use by Loughborough University Security over a period of 9 months. The journey data was used for the development of a drive cycle, the Loughborough University Urban Drive Cycle 2 (LUUDC2), representing urban driving around the university campus and local town roads. It will also have a likeness to other similar driving routines.
Vehicle testing was carried out on a chassis dynamometer on the real-world LUUDC2 and other existing drive cycles for comparison, including ECE-15, UDDS (Urban Dynamometer Driving Schedule) and Artemis Urban. Comparisons were made between real-world driving test results and chassis dynamometer real-world cycle test results. Comparison was also made with a pure electric vehicle (EV) that was tested in a similar way. To verify the test results and investigate the energy consumption inside the system, a Prius model in Autonomie vehicle simulation software was used.
There were two main areas of results outcomes; the first of which was higher fuel consumption on the LUUDC2 compared to other cycles due to cycle effects, with the former having greater accelerations and a more transient speed profile. In a drive cycle acceleration effect study, for the cycle with 80% higher average acceleration than the other the difference in fuel consumption was about 32%, of which around half of this was discovered to be as a result of an increased average acceleration and deceleration rate. Compared to the standard ECE-15 urban drive cycle, fuel consumption was 20% higher on the LUUDC2.
The second main area of outcomes is the factors that give greater energy consumption in real-world driving compared to in a laboratory and in simulations being determined and quantified. There was found to be a significant difference in fuel consumption for the HEV of over a third between on-road real-world driving and chassis dynamometer testing on the developed real-world cycle. Contributors to the difference were identified and explored further to quantify their impact. Firstly, validation of the drive cycle accuracy by statistical comparison to the original dataset using acceleration magnitude distributions highlighted that the cycle could be better matched. Chassis dynamometer testing of a new refined cycle showed that this had a significant impact, contributing approximately 16% of the difference to the real-world driving, bringing this gap down to 21%. This showed how important accurate cycle production from the data set is to give a representative and meaningful output.
Road gradient was investigated as a possible contributor to the difference. The Prius was driven on repeated circuits of the campus to produce a simplified real-world driving cycle that could be directly linked with the corresponding gradients, which were obtained by surveying the land. This cycle was run on the chassis dynamometer and Autonomie was also used to simulate driving this cycle with and without its gradients. This study showed that gradient had a negligible contribution to fuel consumption of the HEV in the case of a circular route where returning to the start point.
A main factor in the difference to real-world driving was found to be the use of climate control auxiliaries with associated ambient temperature. Investigation found this element is estimated to contribute over 15% to the difference in real-world fuel consumption, by running the heater in low temperatures and the air conditioning in high temperatures. This leaves a 6% remainder made up of a collection of other small real-world factors.
Equivalent tests carried out in simulations to those carried out on the chassis dynamometer gave 20% lower fuel consumption. This is accounted for by degradation of the test vehicle at approximately 7%, and the other part by inaccuracy of the simulation model. Laboratory testing of the high voltage battery pack found it constituted around 2% of the vehicle degradation factor, plus an additional 5% due to imbalance of the battery cell voltages, on top of the 7% stated above.
From this investigation it can be concluded that the driving cycle and environment have a substantial impact of the energy use of a HEV. Therefore they could be better designed by incorporating real-world driving into the development process, for example by basing control strategies on real-world drive cycles. Vehicles would also benefit from being developed for use in a particular application to improve their fuel consumption. Alternatively, factors for each of the contributing elements of real-world driving could be included in published fuel economy figures to give prospective users more representative values
Evaluation of the 'Ladder to the moon, culture change studio engagement programme' staff training:Two quasi-experimental case studies
AIM: To evaluate the impact of the CCSEP on care home staff in two care settings for older people in one nursing home and one residential home.
BACKGROUND: Care homes provide personal care and accommodation for older people. The English Dementia Strategy aims to improve the quality of service provision for people with dementia. This includes specific mention of improving the quality of life in care homes and as such includes objectives related to developing the workforce knowledge and skills. The Ladder to the Moon Culture Change Studio Engagement Programme (CCSEP) is a staff training approach based on the Positive Psychology framework that uses theatre- and film-based activities.
METHODS: This study used a wait-list controlled design. However, the data analysis plan was amended to reflect difficulties in data collection, and a quasi-experimental case study approach was consequently utilised. Outcome measures for staff attitudes and beliefs were as follows: Sense of Competence in Dementia Care Staff; Approaches to Dementia Questionnaire; Job Satisfaction Index; Brief Learning Transfer System Inventory; and Scale of Positive and Negative Experience. The Quality of Interaction Schedule (QUIS) was used to observe changes in staff–resident interaction.
RESULTS: Fifty staff in two care homes completed the questionnaires and forty-one undertook formal CCSEP training. In Home A (nursing home), there was no significant change in any of the measures. In Home B (residential home), the QUIS showed an increase in positive interactions post intervention; a significant increase in the Building Relationship subscale of Sense of Competence; and a significant increase in staff sense of hopefulness towards people with dementia. The Brief Learning Transfer System Inventory showed a significant decrease post-intervention. The intervention did not significantly affect the happiness or job satisfaction of care home staff.
CONCLUSION: The results of this study provide tentative evidence about the efficacy of this staff training programme. Some significant improvement in staff attitudes to people with dementia, staff sense of competence and positive staff–resident interactions were found in one of two homes. It is likely that the organisational problems affecting the other care home limited the implementation and therefore efficacy of the intervention there. The results therefore suggest that when a supportive management structure is in place, CCSEP may be more effective in improving staff attitudes, sense of competence and interactions with residents
- …
