7 research outputs found

    The superior salinity tolerance of bread wheat cultivar Shanrong No. 3 is unlikely to be caused by elevated Ta-sro1 poly-(ADP-ribose) polymerase activity

    Get PDF
    Structural and biochemical analyses demonstrate that the elevated salinity tolerance of bread wheat cultivar Shanrong No. 3 is unlikely to be caused by elevated Ta-sro1 poly(ADP-ribose) polymerase activity

    Nuclear Import of Arabidopsis Poly(ADP-Ribose) Polymerase 2 Is Mediated by Importin-α and a Nuclear Localization Sequence Located Between the Predicted SAP Domains

    Get PDF
    Proteins of the Poly(ADP-Ribose) Polymerase (PARP) family modify target proteins by covalent attachment of ADP-ribose moieties onto amino acid side chains. In Arabidopsis, PARP proteins contribute to repair of DNA lesions and modulate plant responses to various abiotic and biotic stressors. Arabidopsis PARP1 and PARP2 are nuclear proteins and given that their molecular weights exceed the diffusion limit of nuclear pore complexes, an active import mechanism into the nucleus is likely. Here we use confocal microscopy of fluorescent protein-tagged Arabidopsis PARP2 and PARP2 deletion constructs in combination with site-directed mutagenesis to identify a nuclear localization sequence in PARP2 that is required for nuclear import. We report that in co-immunoprecipitation assays PARP2 interacts with several isoforms of the importin-α group of nuclear transport adapters and that PARP2 binding to IMPORTIN-α2 is mediated by the identified nuclear localization sequence. Our results demonstrate that PARP2 is a cargo protein of the canonical importin-α/ÎČ nuclear import pathway

    Arabidopsis downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICAL‐INDUCED CELL DEATH1

    Get PDF
    Summary - The oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) causes downy mildew disease on Arabidopsis. To colonize its host, Hpa translocates effector proteins that suppress plant immunity into infected host cells. Here, we investigate the relevance of the interaction between one of these effectors, HaRxL106, and Arabidopsis RADICAL‐INDUCED CELL DEATH1 (RCD1). - We use pathogen infection assays as well as molecular and biochemical analyses to test the hypothesis that HaRxL106 manipulates RCD1 to attenuate transcriptional activation of defense genes. - We report that HaRxL106 suppresses transcriptional activation of salicylic acid (SA)‐induced defense genes and alters plant growth responses to light. HaRxL106‐mediated suppression of immunity is abolished in RCD1 loss‐of‐function mutants. We report that RCD1‐type proteins are phosphorylated, and we identified Mut9‐like kinases (MLKs), which function as phosphoregulatory nodes at the level of photoreceptors, as RCD1‐interacting proteins. An mlk1,3,4 triple mutant exhibits stronger SA‐induced defense marker gene expression compared with wild‐type plants, suggesting that MLKs also affect transcriptional regulation of SA signaling. - Based on the combined evidence, we hypothesize that nuclear RCD1/MLK complexes act as signaling nodes that integrate information from environmental cues an

    Arabidopsis downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICAL‐INDUCED CELL DEATH1

    Get PDF
    Summary - The oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) causes downy mildew disease on Arabidopsis. To colonize its host, Hpa translocates effector proteins that suppress plant immunity into infected host cells. Here, we investigate the relevance of the interaction between one of these effectors, HaRxL106, and Arabidopsis RADICAL‐INDUCED CELL DEATH1 (RCD1). - We use pathogen infection assays as well as molecular and biochemical analyses to test the hypothesis that HaRxL106 manipulates RCD1 to attenuate transcriptional activation of defense genes. - We report that HaRxL106 suppresses transcriptional activation of salicylic acid (SA)‐induced defense genes and alters plant growth responses to light. HaRxL106‐mediated suppression of immunity is abolished in RCD1 loss‐of‐function mutants. We report that RCD1‐type proteins are phosphorylated, and we identified Mut9‐like kinases (MLKs), which function as phosphoregulatory nodes at the level of photoreceptors, as RCD1‐interacting proteins. An mlk1,3,4 triple mutant exhibits stronger SA‐induced defense marker gene expression compared with wild‐type plants, suggesting that MLKs also affect transcriptional regulation of SA signaling. - Based on the combined evidence, we hypothesize that nuclear RCD1/MLK complexes act as signaling nodes that integrate information from environmental cues an

    The Polycomb repressive complex 2 deposits H3K27me3 and represses transposable elements in a broad range of eukaryotes

    Get PDF
    The mobility of transposable elements (TEs) contributes to evolution of genomes. Their uncontrolled activity causes genomic instability; therefore, expression of TEs is silenced by host genomes. TEs are marked with DNA and H3K9 methylation, which are associated with silencing in flowering plants, animals, and fungi. However, in distantly related groups of eukaryotes, TEs are marked by H3K27me3 deposited by the Polycomb repressive complex 2 (PRC2), an epigenetic mark associated with gene silencing in flowering plants and animals. The direct silencing of TEs by PRC2 has so far only been shown in one species of ciliates. To test if PRC2 silences TEs in a broader range of eukaryotes, we generated mutants with reduced PRC2 activity and analyzed the role of PRC2 in extant species along the lineage of Archaeplastida and in the diatom P. tricornutum. In this diatom and the red alga C. merolae, a greater proportion of TEs than genes were repressed by PRC2, whereas a greater proportion of genes than TEs were repressed by PRC2 in bryophytes. In flowering plants, TEs contained potential cis-elements recognized by transcription factors and associated with neighbor genes as transcriptional units repressed by PRC2. Thus, silencing of TEs by PRC2 is observed not only in Archaeplastida but also in diatoms and ciliates, suggesting that PRC2 deposited H3K27me3 to silence TEs in the last common ancestor of eukaryotes. We hypothesize that during the evolution of Archaeplastida, TE fragments marked with H3K27me3 were selected to shape transcriptional regulation, controlling networks of genes regulated by PRC2

    Improving plant drought tolerance and growth under water limitation through combinatorial engineering of signalling networks

    Get PDF
    Agriculture is by far the biggest water consumer on our planet, accounting for 70 per cent of all freshwater withdrawals. Climate change and a growing world population increase pressure on agriculture to use water more efficiently ('more crop per drop'). Water-use efficiency (WUE) and drought tolerance of crops are complex traits that are determined by many physiological processes whose interplay is not well understood. Here, we describe a combinatorial engineering approach to optimize signalling networks involved in the control of stress tolerance. Screening a large population of combinatorially transformed plant lines, we identified a combination of calcium-dependent protein kinase genes that confers enhanced drought stress tolerance and improved growth under water-limiting conditions. Targeted introduction of this gene combination into plants increased plant survival under drought and enhanced growth under water-limited conditions. Our work provides an efficient strategy for engineering complex signalling networks to improve plant performance under adverse environmental conditions, which does not depend on prior understanding of network function

    Arabidopsis downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICAL-INDUCED CELL DEATH1

    Get PDF
    BioRxiv preprint 2017: An Oomycete Effector Protein Induces Shade Avoidance In Arabidopsis And Attenuates Salicylate Signaling By Binding To Host Proteins Of The RADICAL-INDUCED CELL DEATH1 FamilyThe oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) causes downy mildew disease on Arabidopsis. To colonize its host, Hpa translocates effector proteins that suppress plant immunity into infected host cells. Here, we investigate the relevance of the interaction between one of these effectors, HaRxL106, and Arabidopsis RADICAL-INDUCED CELL DEATH1 (RCD1). We use pathogen infection assays as well as molecular and biochemical analyses to test the hypothesis that HaRxL106 manipulates RCD1 to attenuate transcriptional activation of defense genes. We report that HaRxL106 suppresses transcriptional activation of salicylic acid (SA)-induced defense genes and alters plant growth responses to light. HaRxL106-mediated suppression of immunity is abolished in RCD1 loss-of-function mutants. We report that RCD1-type proteins are phosphorylated, and we identified Mut9-like kinases (MLKs), which function as phosphoregulatory nodes at the level of photoreceptors, as RCD1-interacting proteins. An mlk1,3,4 triple mutant exhibits stronger SA-induced defense marker gene expression compared with wild-type plants, suggesting that MLKs also affect transcriptional regulation of SA signaling. Based on the combined evidence, we hypothesize that nuclear RCD1/MLK complexes act as signaling nodes that integrate information from environmental cues and pathogen sensors, and that the Arabidopsis downy mildew pathogen targets RCD1 to prevent activation of plant immunity.Peer reviewe
    corecore