833 research outputs found

    Tropical–North Pacific Climate Linkages over the Past Four Centuries

    Get PDF
    Analyses of instrumental data demonstrate robust linkages between decadal-scale North Pacific and tropical Indo-Pacific climatic variability. These linkages encompass common regime shifts, including the noteworthy 1976 transition in Pacific climate. However, information on Pacific decadal variability and the tropical high-latitude climate connection is limited prior to the twentieth century. Herein tree-ring analysis is employed to extend the understanding of North Pacific climatic variability and related tropical linkages over the past four centuries. To this end, a tree-ring reconstruction of the December-May North Pacific index (NPI)-an index of the atmospheric circulation related to the Aleutian low pressure cell-is presented (1600-1983). The NPI reconstruction shows evidence for the three regime shifts seen in the instrumental NPI data, and for seven events in prior centuries. It correlates significantly with both instrumental tropical climate indices and a coral-based reconstruction of an optimal tropical Indo-Pacific climate index, supporting evidence for a tropical-North Pacific link extending as far west as the western Indian Ocean. The coral-based reconstruction (1781-1993) shows the twentieth-century regime shifts evident in the instrumental NPI and instrumental tropical Indo-Pacific climate index, and three previous shifts. Changes in the strength of correlation between the reconstructions over time, and the different identified shifts in both series prior to the twentieth century, suggest a varying tropical influence on North Pacific climate, with greater influence in the twentieth century. One likely mechanism is the low-frequency variability of the El Nino-Southern Oscillation (ENSO) and its varying impact on Indo-Pacific climate.</p

    Neutrino afterglow from Gamma-Ray Bursts: ~10^{18} eV

    Full text link
    We show that a significant fraction of the energy of a gamma-ray burst(GRB) is probably converted to a burst of 10^{17}-10^{19} eV neutrinos and multiple GeV gammas that follow the GRB by > 10 s . If, as previously suggested, GRB's accelerate protons to ~10^{20} eV, then both the neutrinos and the gammas may be detectable.Comment: Accepted ApJ; added sentence re: sterile neutrinos; related material at http://www.sns.ias.edu/~jn

    A genebic revision of the teibe methiini in the western hemispheee

    Get PDF

    Features of Muon Arrival Time Distributions of High Energy EAS at Large Distances From the Shower Axis

    Get PDF
    In view of the current efforts to extend the KASCADE experiment (KASCADE-Grande) for observations of Extensive Air Showers (EAS) of primary energies up to 1 EeV, the features of muon arrival time distributions and their correlations with other observable EAS quantities have been scrutinised on basis of high-energy EAS, simulated with the Monte Carlo code CORSIKA and using in general the QGSJET model as generator. Methodically various correlations of adequately defined arrival time parameters with other EAS parameters have been investigated by invoking non-parametric methods for the analysis of multivariate distributions, studying the classification and misclassification probabilities of various observable sets. It turns out that adding the arrival time information and the multiplicity of muons spanning the observed time distributions has distinct effects improving the mass discrimination. A further outcome of the studies is the feature that for the considered ranges of primary energies and of distances from the shower axis the discrimination power of global arrival time distributions referring to the arrival time of the shower core is only marginally enhanced as compared to local distributions referring to the arrival of the locally first muon.Comment: 24 pages, Journal Physics G accepte

    On the Discovery of the GZK Cut-off

    Full text link
    The recent claim of the '5 sigma' observation of the Greisen and Zatzepin and Kuzmin cut-off by the HiRes group based on their nine years data is a significant step toward the eventual solution of the one of the most intriguing questions which has been present in physics for more than forty years. However the word 'significance' is used in the mentioned paper in the sense which is not quite obvious. In the present paper we persuade that this claim is a little premature.Comment: 10 page

    Observing Ultra High Energy Cosmic Particles from Space: SEUSO, the Super Extreme Universe Space Observatory Mission

    Get PDF
    The experimental search for ultra high energy cosmic messengers, from E∼1019E\sim 10^{19} eV to beyond E∼1020E\sim 10^{20} eV, at the very end of the known energy spectrum, constitutes an extraordinary opportunity to explore a largely unknown aspect of our universe. Key scientific goals are the identification of the sources of ultra high energy particles, the measurement of their spectra and the study of galactic and local intergalactic magnetic fields. Ultra high energy particles might, also, carry evidence of unknown physics or of exotic particles relics of the early universe. To meet this challenge a significant increase in the integrated exposure is required. This implies a new class of experiments with larger acceptances and good understanding of the systematic uncertainties. Space based observatories can reach the instantaneous aperture and the integrated exposure necessary to systematically explore the ultra high energy universe. In this paper, after briefly summarising the science case of the mission, we describe the scientific goals and requirements of the SEUSO concept. We then introduce the SEUSO observational approach and describe the main instrument and mission features. We conclude discussing the expected performance of the mission

    Solar panels as air Cherenkov detectors for extremely high energy cosmic rays

    Full text link
    Increasing interest towards the observation of the highest energy cosmic rays has motivated the development of new detection techniques. The properties of the Cherenkov photon pulse emitted in the atmosphere by these very rare particles indicate low-cost semiconductor detectors as good candidates for their optical read-out. The aim of this paper is to evaluate the viability of solar panels for this purpose. The experimental framework resulting from measurements performed with suitably-designed solar cells and large conventional photovoltaic areas is presented. A discussion on the obtained and achievable sensitivities follows.Comment: 6 pages, 8 eps figures included with epsfig, uses espcrc2.sty. Talk given at the Sixth Topical Seminar on Neutrino and Astroparticle Physics, San Miniato, Italy, 17-21 May 199

    Ultra high energy neutrinos from gamma ray bursts

    Full text link
    Protons accelerated to high energies in the relativistic shocks that generate gamma ray bursts photoproduce pions, and then neutrinos in situ. I show that ultra high energy neutrinos (> 10^19 eV) are produced during the burst and the afterglow. A larger flux, also from bursts, is generated via photoproduction off CMBR photons in flight but is not correlated with currently observable bursts, appearing as a bright background. Adiabatic/synchrotron losses from protons/pions/muons are negligible. Temporal and directional coincidences with bursts detected by satellites can separate correlated neutrinos from the background.Comment: Adiabatic/synchrotron losses from protons/pions/muons shown to be negligible. Accepted for publication in Phys. Rev. Letters. RevTe

    Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy

    Get PDF
    Chimeric antigen receptor (CAR) T-cell therapy has produced remarkable anti-tumor responses in patients with B-cell malignancies. However, clonal kinetics and transcriptional programs that regulate the fate of CAR-T cells after infusion remain poorly understood. Here we perform TCRB sequencing, integration site analysis, and single-cell RNA sequencing (scRNA-seq) to profile CD8+ CAR-T cells from infusion products (IPs) and blood of patients undergoing CD19 CAR-T immunotherapy. TCRB sequencing shows that clonal diversity of CAR-T cells is highest in the IPs and declines following infusion. We observe clones that display distinct patterns of clonal kinetics, making variable contributions to the CAR-T cell pool after infusion. Although integration site does not appear to be a key driver of clonal kinetics, scRNA-seq demonstrates that clones that expand after infusion mainly originate from infused clusters with higher expression of cytotoxicity and proliferation genes. Thus, we uncover transcriptional programs associated with CAR-T cell behavior after infusion.Published versio
    • …
    corecore