752 research outputs found

    Effect of UV Radiation on the Spectral Fingerprints of Earth-like Planets Orbiting M dwarfs

    Get PDF
    We model the atmospheres and spectra of Earth-like planets orbiting the entire grid of M dwarfs for active and inactive stellar models with TeffT_{eff} = 2300K to TeffT_{eff} = 3800K and for six observed MUSCLES M dwarfs with UV radiation data. We set the Earth-like planets at the 1AU equivalent distance and show spectra from the VIS to IR (0.4μ\mum - 20μ\mum) to compare detectability of features in different wavelength ranges with JWST and other future ground- and spaced-based missions to characterize exo-Earths. We focus on the effect of UV activity levels on detectable atmospheric features that indicate habitability on Earth, namely: H2_2O, O3_3, CH4_4, N2_2O and CH3_3Cl. To observe signatures of life - O2_2/O3_3 in combination with reducing species like CH4_4, we find that early and active M dwarfs are the best targets of the M star grid for future telescopes. The O2_2 spectral feature at 0.76μ\mum is increasingly difficult to detect in reflected light of later M dwarfs due to low stellar flux in that wavelength region. N2_2O, another biosignature detectable in the IR, builds up to observable concentrations in our planetary models around M dwarfs with low UV flux. CH3_3Cl could become detectable, depending on the depth of the overlapping N2_2O feature. We present a spectral database of Earth-like planets around cool stars for directly imaged planets as a framework for interpreting future lightcurves, direct imaging, and secondary eclipse measurements of the atmospheres of terrestrial planets in the HZ to design and assess future telescope capabilities.Comment: in press, ApJ (submitted August 18, 2014), 16 pages, 12 figure

    Lyman alpha initiated winds in late-type stars

    Get PDF
    The IUE survey of late-type stars revealed a sharp division in the HR diagram between stars with solar type spectra (chromosphere and transition region lines) and those with non-solar type spectra (only chromosphere lines). Models of both hot coronae and cool wind flows were calculated using stellar model chromospheres as starting points for stellar wind calculations in order to investigate the possibility of having a supersonic transition locus in the HR diagram dividing hot coronae from cool winds. From these models, it is concluded that the Lyman alpha flux may play an important role in determining the location of a stellar wind critical point. The interaction of Lyman alpha radiation pressure with Alfven waves in producing strong, low temperature stellar winds in the star Arcturus is examined

    Hydrogen column density evaluations toward Capella: consequences on the interstellar deuterium abundance

    Full text link
    The deuterium abundance evaluation in the direction of Capella has for a long time been used as a reference for the local interstellar medium (ISM) within our Galaxy. We show here that broad and weak HI components could be present on the Capella line of sight, leading to a large new additional systematic uncertainty on the N(HI) evaluation. The D/H ratio toward Capella is found to be equal to 1.67 (+/-0.3)x10^-5 with almost identical chi^2 for all the fits (this range includes only the systematic error; the 2 sigma statistical one is almost negligible in comparison). It is concluded that D/H evaluations over HI column densities below 10^19 cm^-2 (even perhaps below 10^20 cm^-2 if demonstrated by additional observations) may present larger uncertainties than previously anticipated. It is mentionned that the D/O ratio might be a better tracer for DI variations in the ISM as recently measured by the Far Ultraviolet Spectroscopic Explorer (FUSE).Comment: Accepted for publication in the Astrophysical Journal Letter

    C IV fluxes from the Sun as a star, and the correlation with magnetic flux

    Get PDF
    A total of 144 C IV wavelength 1548 Solar Maximum Mission (SMM)-UVSP spectroheliograms of solar plages were analyzed, some of which are series of exposures of the same region on the same day. Also analyzed were the C IV wavelength 1551 rasters of plages and C IV wavelength 1548 rasters of the quiet sun. The sample contained data on 17 different plages, observed on 50 different days. The center-to-limb variations of the active regions show that the optical thickness effects in the C IV wavelength 1548 line can be neglected in the conversion from intensity to flux density. As expected for the nearly optically thin situation, the C IV wavelength 1548 line is twice as bright as the C IV 1551 line. The average C IV wavelength 1548 flux density for a quiet region is 2700 ergs/cm/s and, with surprisingly little scatter, 18,000 erg/cm/s for plages. The intensity histograms of rasters obtained at disk center can be separated into characteristic plage and quiet sun contributions with variable relative filling factors. The relationship between the C IV and magnetic flux densities for spatially resolved data is inferred to be almost the same, with only an additional factor of order unity in the constant of proportionality

    Deuterium Toward WD1634-573: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission

    Get PDF
    We use Far Ultraviolet Spectrocopic Explorer (FUSE) observations to study interstellar absorption along the line of sight to the white dwarf WD1634-573 (d=37.1+/-2.6 pc). Combining our measurement of D I with a measurement of H I from Extreme Ultraviolet Explorer data, we find a D/H ratio toward WD1634-573 of D/H=(1.6+/-0.5)e-5. In contrast, multiplying our measurements of D I/O I=0.035+/-0.006 and D I/N I=0.27+/-0.05 with published mean Galactic ISM gas phase O/H and N/H ratios yields D/H(O)=(1.2+/-0.2)e-5 and D/H(N)=(2.0+/-0.4)e-5, respectively. Note that all uncertainties quoted above are 2 sigma. The inconsistency between D/H(O) and D/H(N) suggests that either the O I/H I and/or the N I/H I ratio toward WD1634-573 must be different from the previously measured average ISM O/H and N/H values. The computation of D/H(N) from D I/N I is more suspect, since the relative N and H ionization states could conceivably vary within the LISM, while the O and H ionization states will be more tightly coupled by charge exchange.Comment: 23 pages, 5 figures; AASTEX v5.0 plus EPSF extensions in mkfig.sty; accepted by ApJ Supplemen

    X ray observations of late-type stars using the ROSAT all-sky survey

    Get PDF
    The ROSAT mission made the first x ray survey of the entire sky using an imaging detector. Although ROSAT is a joint NASA/German project and involves direct American participation during its second phase of pointed observations, the all-sky survey remains the sole property of the German investigators. NASA grant represented the first use of ROSAT data analysis funds to support direct American participation in the ROSAT all-sky survey. The project involved a collaborative agreement between the Joint Institute for Laboratory Astrophysics (JILA) and the Max-Planck-Institut fur Extraterrestrische Physik (MPE) where JILA supplied MPE with a post-doctoral research associate with experience in the field of stellar (coronal) x ray emission to work within their ROSAT group. In return, members of the cool star research group at JILA were given the opportunity to collaborate on projects involving ROSAT all-sky survey data. Both sides have benefitted (and still benefit) from this arrangement since MPE suffers from a shortage of researchers who are interested in x ray emission from 'normal' stars and white dwarfs. MPE has also drawn upon experience in optical identification of x ray sources from the Einstein Extended Medium Sensitivity Survey in planning their own identification strategies for the ROSAT all-sky survey. The JILA cool stars group has benefitted since access to all-sky survey data has expanded the scope of their already extensive research programs involving multiwavelength observations of late-type stars. ROSAT was successfully launched on 1 June 1990 and conducted the bulk of the survey from 30 July 1990 to 25 January 1991. Data gaps in the survey have subsequently been made up. At the time of this writing (February 1992), the survey data have been processed once with the Standard Analysis Software System (SASS). A second processing will soon begin with improvements made to the SASS to correct errors and bugs found while carrying out scientific projects with data from the first processing. We outline the major research activities of Dr. Fleming over the past year (detailed accounts of his activities during the first two years of this grant can be found in the first-year and second-year status reports on this grant). Regarding the three specific projects which were proposed in the original proposal, two of them (White Dwarfs and Late M Dwarfs) are near completion. The results are described in two conference proceedings which are appended

    The FUV spectrum of TW Hya. I. Observations of H2_2 Fluorescence

    Get PDF
    We observed the classical T Tauri star TW Hya with \textit{HST}/STIS using the E140M grating, from 1150--1700 \AA, with the E230M grating, from 2200--2900 \AA, and with \FUSE from 900--1180 \AA. Emission in 143 Lyman-band H2_2 lines representing 19 progressions dominates the spectral region from 1250--1650 \AA. The total H2_2 emission line flux is 1.94×10121.94 \times 10^{-12} erg cm2^{-2} s1^{-1}, which corresponds to 1.90×1041.90\times10^{-4} LL_\odot at TW Hya's distance of 56 pc. A broad stellar \Lya line photoexcites the H2_2 from excited rovibrational levels of the ground electronic state to excited electronic states. The \ion{C}{2} 1335 \AA doublet, \ion{C}{3} 1175 \AA\ multiplet, and \ion{C}{4} 1550 \AA doublet also electronically excite H2_2. The velocity shift of the H2_2 lines is consistent with the photospheric radial velocity of TW Hya, and the emission is not spatially extended beyond the 0\farcs05 resolution of \textit{HST}. The H2_2 lines have an intrinsic FWHM of 11.91±0.1611.91\pm0.16 \kms. One H2_2 line is significantly weaker than predicted by this model because of \ion{C}{2} wind absorption. We also do not observe any H2_2 absorption against the stellar \Lya profile. From these results, we conclude that the H2_2 emission is more consistent with an origin in a disk rather than in an outflow or circumstellar shell. We also analyze the hot accretion-region lines (e.g., \ion{C}{4}, \ion{Si}{4}, \ion{O}{6}) of TW Hya, which are formed at the accretion shock, and discuss some reasons why Si lines appear significantly weaker than other TR region lines.Comment: accepted by ApJ, 42 pages -- 20 text, 11 figure
    corecore