670 research outputs found

    Analysis of a range estimator which uses MLS angle measurements

    Get PDF
    A concept that uses the azimuth signal from a microwave landing system (MLS) combined with onboard airspeed and heading data to estimate the horizontal range to the runway threshold is investigated. The absolute range error is evaluated for trajectories typical of General Aviation (GA) and commercial airline operations (CAO). These include constant intercept angles for GA and CAO, and complex curved trajectories for CAO. It is found that range errors of 4000 to 6000 feet at the entry of MLS coverage which then reduce to 1000-foot errors at runway centerline intercept are possible for GA operations. For CAO, errors at entry into MLS coverage of 2000 feet which reduce to 300 feet at runway centerline interception are possible

    Preliminary control law and hardware designs for a ride quality augmentation system for commuter aircraft. Phase 2

    Get PDF
    The continued investigation of the design of Ride Quality Augmentation Systems (RQAS) for commuter aircraft is described. The purpose of these RQAS is the reduction of the vertical and lateral acceleration response of the aircraft due to atmospheric turbulence by the application of active control. The current investigations include the refinement of the sample data feedback control laws based on the control-rate-weighting and output-weighting optimal control design techniqes. These control designs were evaluated using aircraft time simulations driven by Dryden spectra turbulence. Fixed gain controllers were tested throughout the aircrft operating envelope. The preliminary design of the hardware modifications necessary to implement and test the RQAS on a commuter aircraft is included. These include a separate surface elevator and the flap modifications to provide both direct lift and roll control. A preliminary failure mode investigation was made for the proposed configuration. The results indicate that vertical acceleration reductions of 45% and lateral reductions of more than 50% are possible. A fixed gain controller appears to be feasible with only minor response degradation

    Nondielectric long-range solvation of polar liquids in cubic symmetry

    Get PDF
    Long-range solvation properties of strongly coupled dipolar systems simulated using the Ewald and reaction field methods are assessed by using electric fluctuation formulas for a dielectric medium. Some components of the fluctuating electric multipole moments are suppressed, whereas other components are favored as the boundary of the simulation box is approached. An analysis of electrostatic interactions in a periodic cubic system suggests that these structural effects are due to the periodicity embedded in the Ewald method. Furthermore, the results obtained using the reaction field method are very similar to those obtained using the Ewald method, an effect which we attribute to the use of toroidal boundary conditions in the former case. Thus, the long-range solvation properties of polar liquids simulated using either of the two methods are nondielectric in their character. (C) 2009 American Institute of Physics. [doi:10.1063/1.3250941

    On the fluid-fluid phase separation in charged-stabilized colloidal suspensions

    Full text link
    We develop a thermodynamic description of particles held at a fixed surface potential. This system is of particular interest in view of the continuing controversy over the possibility of a fluid-fluid phase separation in aqueous colloidal suspensions with monovalent counterions. The condition of fixed surface potential allows in a natural way to account for the colloidal charge renormalization. In a first approach, we assess the importance of the so called ``volume terms'', and find that in the absence of salt, charge renormalization is sufficient to stabilize suspension against a fluid-fluid phase separation. Presence of salt, on the other hand, is found to lead to an instability. A very strong dependence on the approximations used, however, puts the reality of this phase transition in a serious doubt. To further understand the nature of the instability we next study a Jellium-like approximation, which does not lead to a phase separation and produces a relatively accurate analytical equation of state for a deionized suspensions of highly charged colloidal spheres. A critical analysis of various theories of strongly asymmetric electrolytes is presented to asses their reliability as compared to the Monte Carlo simulations

    Neutron reflectometry to investigate the delivery of lipids and DNA to interfaces (Review)

    Get PDF
    The application of scattering methods in the study of biological and biomedical problems is a field of research that is currently experiencing fast growth. In particular, neutron reflectometry (NR) is a technique that is becoming progressively more widespread, as indicated by the current commissioning of several new reflectometers worldwide. NR is valuable for the characterization of biomolecules at interfaces due to its capability to provide quantitative structural and compositional information on relevant molecular length scales. Recent years have seen an increasing number of applications of NR to problems related to drug and gene delivery. We start our review by summarizing the experimental methodology of the technique with reference to the description of biological liquid interfaces. Various methods for the interpretation of data are then discussed, including a new approach based on the lattice mean-field theory to help characterize stimulus-responsive surfaces relevant to drug delivery function. Recent progress in the subject area is reviewed in terms of NR studies relevant to the delivery of lipids and DNA to surfaces. Lastly, we discuss two case studies to exemplify practical features of NR that are exploited in combination with complementary techniques. The first case concerns the interactions of lipid-based cubic phase nanoparticles with model membranes (a drug delivery application), and the second case concerns DNA compaction at surfaces and in the bulk solution (a gene delivery application). (C) 2008 American Vacuum Society. [DOI: 10.1116/1.2976448

    Polyion Adsorption onto Catanionic Surfaces. A Monte Carlo Study

    Get PDF
    The adsorption of a single and negatively charged polyion with varying flexibility onto a surface carrying both negative and positive charges representing a charged membrane surface has been investigated by using a simple model employing Monte Carlo simulations. The polyion was represented by a sequence of negatively charged hard spheres connected with harmonic bonds. The charged surface groups were also represented by charged hard spheres, and they were positioned on a hard surface slightly protruding into the solution. The surface charges were either frozen in a liquidlike structure or laterally mobile. With a large excess of positive surface charges, the classical picture of a strongly adsorbed polyion with an extended and flat configuration emerged. However, adsorption also appeared at a net neutral surface or at a weakly negatively charged surface, and at these conditions the adsorption was stronger with a flexible polyion as compared to a semiflexible one, two features not appearing in simpler models containing homogeneously charged surfaces. The presence of charged surface patches (frozen surface charges) and the ability of polarization of the surface charges (mobile surface charges) are the main reasons for the enhanced adsorption. The stronger adsorption with the flexible chain is caused by its greater ability to spatially correlate with the surface charges

    Adjuvant low-dose interferon α2a with or without dacarbazine compared with surgery alone: a prospective-randomized phase III DeCOG trial in melanoma patients with regional lymph node metastasis

    Get PDF
    Background: More than half of patients with melanoma that has spread to regional lymph nodes develop recurrent disease within the first 3 years after surgery. The aim of the study was to improve disease-free survival (DFS) and overall survival (OS) with interferon (IFN) α2a with or without dacarbazine (DTIC) compared with observation alone. Patients and methods: A total of 444 patients from 42 centers of the German Dermatologic Cooperative Oncology Group who had received a complete lymph node dissection for pathologically proven regional node involvement were randomized to receive either 3 MU s.c. of IFNα2a three times a week for 2 years (Arm A) or combined treatment with same doses of IFNα2a plus DTIC 850 mg/m2 every 4-8 weeks for 2 years (Arm B) or to observation alone (Arm C). Treatment was discontinued at first sign of relapse. Results: A total of 441 patients were eligible for intention-to-treat analysis. Kaplan-Meier 4-year OS rate of those who had received IFNα2a was 59%. For those with surgery alone, survival was 42% (A versus C, P = 0.0045). No improvement of survival was found for the combined treatment Arm B with 45% survival rate (B versus C, P = 0.76). Similarly, DFS rates showed significant benefit for Arm A, and not for Arm B. Multivariate Cox model confirmed that Arm A has an impact on OS (P = 0.005) but not Arm B (P = 0.34). Conclusions: 3 MU interferon α2a given s.c. three times a week for 2 years significantly improved OS and DFS in patients with melanoma that had spread to the regional lymph nodes. Interestingly, the addition of DTIC reversed the beneficial effect of adjuvant interferon α2a therap

    Poisson-Boltzmann Theory of Charged Colloids: Limits of the Cell Model for Salty Suspensions

    Full text link
    Thermodynamic properties of charge-stabilised colloidal suspensions are commonly modeled by implementing the mean-field Poisson-Boltzmann (PB) theory within a cell model. This approach models a bulk system by a single macroion, together with counterions and salt ions, confined to a symmetrically shaped, electroneutral cell. While easing solution of the nonlinear PB equation, the cell model neglects microion-induced correlations between macroions, precluding modeling of macroion ordering phenomena. An alternative approach, avoiding artificial constraints of cell geometry, maps a macroion-microion mixture onto a one-component model of pseudo-macroions governed by effective interactions. In practice, effective-interaction models are usually based on linear screening approximations, which can accurately describe nonlinear screening only by incorporating an effective (renormalized) macroion charge. Combining charge renormalization and linearized PB theories, in both the cell model and an effective-interaction (cell-free) model, we compute osmotic pressures of highly charged colloids and monovalent microions over a range of concentrations. By comparing predictions with primitive model simulation data for salt-free suspensions, and with predictions of nonlinear PB theory for salty suspensions, we chart the limits of both the cell model and linear-screening approximations in modeling bulk thermodynamic properties. Up to moderately strong electrostatic couplings, the cell model proves accurate in predicting osmotic pressures of deionized suspensions. With increasing salt concentration, however, the relative contribution of macroion interactions grows, leading predictions of the cell and effective-interaction models to deviate. No evidence is found for a liquid-vapour phase instability driven by monovalent microions. These results may guide applications of PB theory to soft materials.Comment: 27 pages, 5 figures, special issue of Journal of Physics: Condensed Matter on "Classical density functional theory methods in soft and hard matter

    Charge Renormalization, Effective Interactions, and Thermodynamics of Deionized Colloidal Suspensions

    Full text link
    Thermodynamic properties of charge-stabilised colloidal suspensions depend sensitively on the effective charge of the macroions, which can be substantially lower than the bare charge in the case of strong counterion-macroion association. A theory of charge renormalization is proposed, combining an effective one-component model of charged colloids with a thermal criterion for distinguishing between free and associated counterions. The theory predicts, with minimal computational effort, osmotic pressures of deionized suspensions of highly charged colloids in close agreement with large-scale simulations of the primitive model.Comment: 15 pages, 7 figure

    Molecular Dynamics Simulation of Semiflexible Polyampholyte Brushes - The Effect of Charged Monomers Sequence

    Full text link
    Planar brushes formed by end-grafted semiflexible polyampholyte chains, each chain containing equal number of positively and negatively charged monomers is studied using molecular dynamics simulations. Keeping the length of the chains fixed, dependence of the average brush thickness and equilibrium statistics of the brush conformations on the grafting density and the salt concentration are obtained with various sequences of charged monomers. When similarly charged monomers of the chains are arranged in longer blocks, the average brush thickness is smaller and dependence of brush properties on the grafting density and the salt concentration is stronger. With such long blocks of similarly charged monomers, the anchored chains bond to each other in the vicinity of the grafting surface at low grafting densities and buckle toward the grafting surface at high grafting densities.Comment: 8 pages,7 figure
    • …
    corecore