31 research outputs found
Using negative-latency gravitational wave alerts to detect prompt radio bursts from binary neutron star mergers with the Murchison Widefield Array
We examine how fast radio burst (FRB)-like signals predicted to be generated
during the merger of a binary neutron star (BNS) may be detected in
low-frequency radio observations triggered by the aLIGO/Virgo gravitational
wave detectors. The rapidity, directional accuracy, and sensitivity of
follow-up observations with the Murchison Widefield Array (MWA) are considered.
We show that with current methodology, the rapidity criteria fails for
triggered MWA observations above 136 MHz for BNS mergers within the aLIGO/Virgo
horizon, for which little dispersive delay is expected. A calculation of the
expected reduction in response time by triggering on `negative latency' alerts
from aLIGO/Virgo observations of gravitational waves generated by the BNS
inspiral is presented. This allows for observations up to 300 MHz where the
radio signal is expected to be stronger. To compensate for the poor positional
accuracy expected from these alerts, we propose a new MWA observational mode
that is capable of viewing one quarter of the sky. We show the sensitivity of
this mode is sufficient to detect an FRB-like burst from an event similar to
GW170817 if it occurred during the ongoing aLIGO/Virgo third science run (O3).Comment: Published in MNRAS Letters. 8 pages (5 main + 3 supplemental), 4
figures. Link to article:
https://academic.oup.com/mnrasl/advance-article-abstract/doi/10.1093/mnrasl/slz129/555266
The next detectors for gravitational wave astronomy
This paper focuses on the next detectors for gravitational wave astronomy
which will be required after the current ground based detectors have completed
their initial observations, and probably achieved the first direct detection of
gravitational waves. The next detectors will need to have greater sensitivity,
while also enabling the world array of detectors to have improved angular
resolution to allow localisation of signal sources. Sect. 1 of this paper
begins by reviewing proposals for the next ground based detectors, and presents
an analysis of the sensitivity of an 8 km armlength detector, which is proposed
as a safe and cost-effective means to attain a 4-fold improvement in
sensitivity. The scientific benefits of creating a pair of such detectors in
China and Australia is emphasised. Sect. 2 of this paper discusses the high
performance suspension systems for test masses that will be an essential
component for future detectors, while sect. 3 discusses solutions to the
problem of Newtonian noise which arise from fluctuations in gravity gradient
forces acting on test masses. Such gravitational perturbations cannot be
shielded, and set limits to low frequency sensitivity unless measured and
suppressed. Sects. 4 and 5 address critical operational technologies that will
be ongoing issues in future detectors. Sect. 4 addresses the design of thermal
compensation systems needed in all high optical power interferometers operating
at room temperature. Parametric instability control is addressed in sect. 5.
Only recently proven to occur in Advanced LIGO, parametric instability
phenomenon brings both risks and opportunities for future detectors. The path
to future enhancements of detectors will come from quantum measurement
technologies. Sect. 6 focuses on the use of optomechanical devices for
obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum
measurement options
Low-latency gravitational wave alert products and their performance in anticipation of the fourth LIGO-Virgo-KAGRA observing run
Multi-messenger searches for binary neutron star (BNS) and neutron star-black
hole (NSBH) mergers are currently one of the most exciting areas of astronomy.
The search for joint electromagnetic and neutrino counterparts to gravitational
wave (GW)s has resumed with Advanced LIGO (aLIGO)'s, Advanced Virgo (AdVirgo)'s
and KAGRA's fourth observing run (O4). To support this effort, public
semi-automated data products are sent in near real-time and include
localization and source properties to guide complementary observations.
Subsequent refinements, as and when available, are also relayed as updates. In
preparation for O4, we have conducted a study using a simulated population of
compact binaries and a Mock Data Challenge (MDC) in the form of a real-time
replay to optimize and profile the software infrastructure and scientific
deliverables. End-to-end performance was tested, including data ingestion,
running online search pipelines, performing annotations, and issuing alerts to
the astrophysics community. In this paper, we present an overview of the
low-latency infrastructure as well as an overview of the performance of the
data products to be released during O4 based on a MDC. We report on expected
median latencies for the preliminary alert of full bandwidth searches (29.5 s)
and for the creation of early warning triggers (-3.1 s), and show consistency
and accuracy of released data products using the MDC. This paper provides a
performance overview for LVK low-latency alert structure and data products
using the MDC in anticipation of O4
The Mock LISA Data Challenges: from Challenge 1B to Challenge 3
The Mock LISA Data Challenges are a programme to demonstrate and encourage
the development of LISA data-analysis capabilities, tools and techniques. At
the time of this workshop, three rounds of challenges had been completed, and
the next was about to start. In this article we provide a critical analysis of
entries to the latest completed round, Challenge 1B. The entries confirm the
consolidation of a range of data-analysis techniques for Galactic and
massive--black-hole binaries, and they include the first convincing examples of
detection and parameter estimation of extreme--mass-ratio inspiral sources. In
this article we also introduce the next round, Challenge 3. Its data sets
feature more realistic waveform models (e.g., Galactic binaries may now chirp,
and massive--black-hole binaries may precess due to spin interactions), as well
as new source classes (bursts from cosmic strings, isotropic stochastic
backgrounds) and more complicated nonsymmetric instrument noise.Comment: 20 pages, 3 EPS figures. Proceedings of the 12th Gravitational Wave
Data Analysis Workshop, Cambridge MA, 13--16 December 2007. Typos correcte
An ultra-wide bandwidth (704 to 4 032 MHz) receiver for the Parkes radio telescope
We describe an ultra-wide-bandwidth, low-frequency receiver recently installed on the Parkes radio telescope. The receiver system provides continuous frequency coverage from 704 to 4032 MHz. For much of the band ( ), the system temperature is approximately 22 K and the receiver system remains in a linear regime even in the presence of strong mobile phone transmissions. We discuss the scientific and technical aspects of the new receiver, including its astronomical objectives, as well as the feed, receiver, digitiser, and signal processor design. We describe the pipeline routines that form the archive-ready data products and how those data files can be accessed from the archives. The system performance is quantified, including the system noise and linearity, beam shape, antenna efficiency, polarisation calibration, and timing stability