12 research outputs found

    Novel associations between parental and newborn cord blood metabolic profiles in the Norwegian Mother, Father and Child Cohort Study

    Get PDF
    Background More than one third of Norwegian women and men between 20 and 40 years of age have elevated cholesterol concentration. Parental metabolic health around conception or during pregnancy may affect the offspring’s cardiovascular disease risk. Lipids are important for fetal development, but the determinants of cord blood lipids have scarcely been studied. We therefore aimed to describe the associations between maternal and paternal peri-pregnancy lipid and metabolic profile and newborn cord blood lipid and metabolic profile. Methods This study is based on 710 mother–father–newborn trios from the Norwegian Mother, Father and Child Cohort Study (MoBa) and uses data from the Medical Birth Registry of Norway (MBRN). The sample included in this study consisted of parents with and without self-reported hypercholesterolemia the last 6 months before pregnancy and their partners and newborns. Sixty-four cord blood metabolites detected by nuclear magnetic resonance spectroscopy were analyzed by linear mixed model analyses. The false discovery rate procedure was used to correct for multiple testing. Results Among mothers with hypercholesterolemia, maternal and newborn plasma high-density lipoprotein cholesterol, apolipoprotein A1, linoleic acid, docosahexaenoic acid, alanine, glutamine, isoleucine, leucine, valine, creatinine, and particle concentration of medium high-density lipoprotein were significantly positively associated (0.001 ≤ q ≤ 0.09). Among mothers without hypercholesterolemia, maternal and newborn linoleic acid, valine, tyrosine, citrate, creatinine, high-density lipoprotein size, and particle concentration of small high-density lipoprotein were significantly positively associated (0.02 ≤ q ≤ 0.08). Among fathers with hypercholesterolemia, paternal and newborn ratio of apolipoprotein B to apolipoprotein A1 were significantly positively associated (q = 0.04). Among fathers without hypercholesterolemia, no significant associations were found between paternal and newborn metabolites. Sex differences were found for many cord blood lipids. Conclusions Maternal and paternal metabolites and newborn sex were associated with several cord blood metabolites. This may potentially affect the offspring’s long-term cardiovascular disease risk

    Meals with similar fat content from different dairy products induce different postprandial triglyceride responses in healthy adults:a randomized controlled cross-over trial

    No full text
    Abstract Background: Postprandial lipemia is a risk factor for cardiovascular disease. Dairy products differ in nutrient content and food matrix, and little is known about how different dairy products affect postprandial triglyceride (TG) concentrations. Objective: We investigated the effect of meals with similar amounts of fat from different dairy products on postprandial TG concentrations over 6 h in healthy adults. Methods: A randomized controlled cross-over study was performed on 47 subjects (30% men), with median (25th–75th percentile) age of 32 (25–46) y and body mass index of 23.6 (21.0–25.8) kg/m². Meals included 1 of butter, cheese, whipped cream, or sour cream, corresponding to 45 g of fat (approximately 60 energy%). Serum concentrations of TGs (primary outcome), and total cholesterol (TC), low density lipoprotein cholesterol (LDL cholesterol), high density lipoprotein cholesterol (HDL cholesterol), insulin, glucose, non-esterified fatty acids, and plasma glucose-dependent insulinotropic polypeptide (secondary outcomes) were measured before the meal and 2, 4, and 6 h postprandially. Incremental AUC (iAUC) was calculated for the responses, and data were analyzed using a linear mixed model. Results: Sour cream induced a 61% larger TG-iAUC0–6 h compared to whipped cream (P < 0.001), a 53% larger TG-iAUC0–6 h compared to butter (P < 0.001), and a 23% larger TG-iAUC0–6 h compared to cheese (P = 0.05). No differences in TG-iAUC0–6 h between the other meals were observed. Intake of sour cream induced a larger HDL cholesterol-iAUC0–6 h compared to cheese (P = 0.01). Intake of cheese induced a 124% larger insulin iAUC0–6 h compared to butter (P = 0.006). No other meal effects were observed. Conclusions: High-fat meals containing similar amount of fat from different dairy products induce different postprandial effects on serum TGs, HDL cholesterol, and insulin in healthy adults. The potential mechanisms and clinical impact of our findings remain to be further elucidated. The study was registered at www.clinicaltrials.gov as NCT02836106

    Maternal lipid levels in early pregnancy as a predictor of childhood lipid levels: a prospective cohort study

    Get PDF
    Background Maternal lipid levels in early pregnancy are associated with maternal health and foetal growth. It is however unclear if maternal lipids in early pregnancy can be used to predict childhood lipid levels. The aim of this study is to assess the association between maternal and offspring childhood lipid levels, and to investigate the influence of maternal BMI and diet on these associations. Methods This study included 2692 women participating in the Generation R study, an ongoing population-based prospective cohort study from early life onwards. Women with an expected delivery date between 2002 and 2006 living in Rotterdam, the Netherlands were included. Total cholesterol, triglycerides and high-density lipoprotein cholesterol (HDL-c) were measured in early pregnancy (median 13.2 weeks [90% range 10.6; 17.1]). Low-density lipoprotein cholesterol (LDL-c), remnant cholesterol and non-HDL-c were calculated. Corresponding lipid measurements were determined in 2692 children at the age of 6 (median 6.0 years [90% range 5.7; 7.5]) and 1673 children 10 years (median 9.7 years [90% range 9.5; 10.3]). Multivariate linear regression analysis was used to examine the association between maternal lipid levels in early pregnancy and the corresponding childhood lipid measurements at the ages of 6 and 10 years while adjusting for confounders. Results Maternal lipid levels in early pregnancy are positively associated with corresponding childhood lipid levels 6 and 10 years after pregnancy, independent of maternal body mass index and diet. Conclusions Maternal lipid levels in early pregnancy may provide an insight to the lipid profile of children years later. Gestational lipid levels may therefore be used as an early predictor of children’s long-term health. Monitoring of these gestational lipid levels may give a window-of-opportunity to start early interventions to decrease offspring’s lipid levels and possibly diminish their cardiovascular risk later in life. Future studies are warranted to investigate the genetic contribution on maternal lipid levels in pregnancy and lipid levels of their offspring years later

    Maternal prenatal cholesterol levels predict offspring weight trajectories during childhood in the Norwegian Mother, Father and Child Cohort Study

    No full text
    Abstract Background: Numerous intrauterine factors may affect the offspring’s growth during childhood. We aimed to explore if maternal and paternal prenatal lipid, apolipoprotein (apo)B and apoA1 levels are associated with offspring weight, length, and body mass index from 6 weeks to eight years of age. This has previously been studied to a limited extent. Methods: This parental negative control study is based on the Norwegian Mother, Father and Child Cohort Study and uses data from the Medical Birth Registry of Norway. We included 713 mothers and fathers with or without self-reported hypercholesterolemia and their offspring. Seven parental metabolites were measured by nuclear magnetic resonance spectroscopy, and offspring weight and length were measured at 12 time points. Data were analyzed by linear spline mixed models, and the results are presented as the interaction between parental metabolite levels and offspring spline (age). Results: Higher maternal total cholesterol (TC) level was associated with a larger increase in offspring body weight up to 8 years of age (0.03 ≤ Pinteraction ≤ 0.04). Paternal TC level was not associated with change in offspring body weight (0.17 ≤ Pinteraction ≤ 0.25). Higher maternal high-density lipoprotein cholesterol (HDL-C) and apoA1 levels were associated with a lower increase in offspring body weight up to 8 years of age (0.001 ≤ Pinteraction ≤ 0.005). Higher paternal HDL-C and apoA1 levels were associated with a lower increase in offspring body weight up to 5 years of age but a larger increase in offspring body weight from 5 to 8 years of age (0.01 ≤ Pinteraction ≤ 0.03). Parental metabolites were not associated with change in offspring height or body mass index up to 8 years of age (0.07 ≤ Pinteraction ≤ 0.99). Conclusions: Maternal compared to paternal TC, HDL-C, and apoA1 levels were more strongly and consistently associated with offspring body weight during childhood, supporting a direct intrauterine effect

    Intake of Fermented Dairy Products Induces a Less Pro‐Inflammatory Postprandial Peripheral Blood Mononuclear Cell Gene Expression Response than Non‐Fermented Dairy Products: A Randomized Controlled Cross‐Over Trial

    No full text
    Scope - It is aimed to investigate how intake of high‐fat meals composed of different dairy products with a similar fat content affects postprandial peripheral blood mononuclear cell (PBMC) expression of inflammation‐related genes, as well as circulating inflammatory markers and metabolites. Methods and results - Healthy subjects (n = 47) consume four different high‐fat meals composed of either butter, cheese, whipped cream, or sour cream in a randomized controlled cross‐over study. Fasting and postprandial PBMC gene expression, plasma metabolites, and circulating inflammatory markers are measured. Using a linear mixed model, it is found that expression of genes related to lymphocyte activation, cytokine signaling, chemokine signaling, and cell adhesion is differentially altered between the four meals. In general, intake of the fermented products cheese and sour cream reduces, while intake of the non‐fermented products butter and whipped cream increases, expression of these genes. Plasma amino acid concentrations increase after intake of cheese compared to the other meals, and the amino acid changes correlate with several of the differentially altered genes. Conclusion - Intake of fermented dairy products, especially cheese, induces a less inflammatory postprandial PBMC gene expression response than non‐fermented dairy products. These findings may partly explain inconsistent findings in studies on health effects of dairy products

    Differential effects of bariatric surgery and lifestyle interventions on plasma levels of Lp(a) and fatty acids

    Get PDF
    Abstract Background Limited evidence suggests that surgical and non-surgical obesity treatment differentially influence plasma Lipoprotein (a) [Lp(a)] levels. Further, a novel association between plasma arachidonic acid and Lp(a) has recently been shown, suggesting that fatty acids are a possible target to influence Lp(a). Here, the effects of bariatric surgery and lifestyle interventions on plasma levels of Lp(a) were compared, and it was examined whether the effects were mediated by changes in plasma fatty acid (FA) levels. Methods The study includes two independent trials of patients with overweight or obesity. Trial 1: Two-armed intervention study including 82 patients who underwent a 7-week low energy diet (LED), followed by Roux-en-Y gastric bypass and 52-week follow-up (surgery-group), and 77 patients who underwent a 59-week energy restricted diet- and exercise-program (lifestyle-group). Trial 2: A clinical study including 134 patients who underwent a 20-week very-LED/LED (lifestyle-cohort). Results In the surgery-group, Lp(a) levels [median (interquartile range)] tended to increase in the pre-surgical LED-phase [17(7–68)-21(7–81)nmol/L, P = 0.05], but decreased by 48% after surgery [21(7–81)—11(7–56)nmol/L, P < 0.001]. In the lifestyle-group and lifestyle-cohort, Lp(a) increased by 36%[14(7–77)—19(7–94)nmol/L, P < 0.001] and 14%[50(14–160)—57(19–208)nmol/L, P < 0.001], respectively. Changes in Lp(a) were independent of weight loss. Plasma levels of total saturated FAs remained unchanged after surgery, but decreased after lifestyle interventions. Arachidonic acid and total n-3 FAs decreased after surgery, but increased after lifestyle interventions. Plasma FAs did not mediate the effects on Lp(a). Conclusion Bariatric surgery reduced, whereas lifestyle interventions increased plasma Lp(a), independent of weight loss. The interventions differentially influenced changes in plasma FAs, but these changes did not mediate changes in Lp(a). Trial registration Trial 1: Clinicaltrials.gov NCT00626964. Trial 2: Netherlands Trial Register NL2140 (NTR2264). Graphical abstrac
    corecore