257 research outputs found

    NAS-PINN: Neural architecture search-guided physics-informed neural network for solving PDEs

    Full text link
    Physics-informed neural network (PINN) has been a prevalent framework for solving PDEs since proposed. By incorporating the physical information into the neural network through loss functions, it can predict solutions to PDEs in an unsupervised manner. However, the design of the neural network structure basically relies on prior knowledge and experience, which has caused great trouble and high computational overhead. Therefore, we propose a neural architecture search-guided method, namely NAS-PINN, to automatically search the optimum neural architecture for solving certain PDEs. By relaxing the search space into a continuous one and utilizing masks to realize the addition of tensors in different shapes, NAS-PINN can be trained through a bi-level optimization, where the inner loop optimizes the weights and bias of neural networks and the outer loop the architecture parameters. We verify the ability of NAS-PINN by several numerical experiments including Poisson, Burgers, and Advection equations. The characteristics of effective neural architectures for solving different PDEs are summarized, which can be used to guide the design of neural networks in PINN. It is found that more hidden layers do not necessarily mean better performance and sometimes can be harmful. Especially for Poisson and Advection, a shallow neural network with more neurons is more appropriate in PINNs. It is also indicated that for complex problems, neural networks with residual connection can improve the performance of PINNs.Comment: 19 pages, 14 figures, 5 table

    Influence of copper contamination on thermophysical, radiation, and dielectric breakdown properties of CO2-N2 mixtures as replacement of SF6 in circuit breakers

    Get PDF
    La thèse porte sur les propriétés thermodynamiques, de transport, de diffusion de rayonnement, et diélectriques des mélanges CO2-N2 contaminés par du cuivre, pour des températures de 300 - 30,000 K et des pressions 0.1 - 16 bar. Les motivations de ce travail ainsi qu'un état de l'art sur le remplacement du SF6 et l'influence des vapeurs métalliques dans de tels dispositifs sont présentés dans le chapitre 1. Le chapitre 2 étudie les compositions à l'équilibre calculées à partir de la méthode de minimisation de l'énergie libre de Gibbs, en considérant la présence de phases condensées dans le plasma. A partir de ces compositions, nous présentons les propriétés thermodynamiques comme la densité de masse, l'enthalpie et la chaleur spécifiques à pressions constante. Les corrections de Virial et Debye-Hückel sont prises en compte pour tenir compte de l'effet des ions et des hautes pressions. Dans le chapitre 3, les coefficients de transport (conductivité électrique, viscosité, et conductivité thermique) et les coefficients de diffusion combinés (coefficients de diffusion ordinaires combinés, ceux liés au champ électrique, aux gradients de pression et de température) sont calculés selon la théorie de Chapman-Enskog. Les intégrales de collision nécessaires au calcul de ces coefficients sont obtenues pour les interactions neutre-neutre et neutre-ion à partir d'un potentiel de Lennard-Jones modifié. Dans le chapitre 4, les coefficients d'émission nette (CEN) sont calculés en considérant le rayonnement des raies atomiques, du continuum atomique, des raies moléculaires et du continuum moléculaire. Les élargissements en pression des raies (élargissements de Van der Waals et de résonance), les élargissements Stark, et l'élargissement sont pris en compte dans la détermination d'un facteur de fuite qui permet de simplifier le calcul du coefficient d'émission des raies. Le rayonnement du continuum atomique tient compte de l'attachement radiatif, de la recombinaison radiative et du Bremsstrahlung. Dans le chapitre 5, les propriétés diélectriques de claquage (incluant la fonction de distribution d'énergie des EEDF), le coefficient réduit d'ionisation réduit, le coefficient réduit d'attachement électronique, le coefficient effectif réduit d'ionisation, et le champ critique réduit) du gaz chaud ont été calculés sur la base de l'approximation à deux termes de l'équation de Boltzmann. Les interactions, incluant les collisions élastiques, excitation, ionisation et attachement entre électrons et espèces neutres sont pris en compte dans la résolution de l'équation de Boltzmann. Les sections efficaces d'ionisation de Cu2 et CuO non disponibles dans la littérature ont été calcules selon la méthode DM. La conclusion des travaux et leurs perspectives sont présentés dans le chapitre.Sulfur hexafluoride (SF6) is a greenhouse gas designated by the Kyoto Protocol because of its extremely high global warming potential (GWP). CO2, N2, and their mixtures have the potential to replace SF6 in certain applications, such as circuit breakers. In these electric apparatus, copper vapour resulting from the heating of electrodes can modify the characteristics of arc plasmas, which must be taken into account when setting up physical models. This dissertation, therefore, investigates the thermodynamic, transport, diffusion, radiation, and dielectric breakdown properties of CO2-N2 mixtures contaminated by copper at temperatures of 300 - 30,000 K and pressures of 0.1 - 16 bar. The equilibrium compositions are calculated using the minimization of Gibbs free energy with consideration of condensed species. Copper vapour is found to condense at temperatures below 3000 K. Based on the compositions, the thermodynamic properties, including mass density, specific enthalpy, and specific heat at constant enthalpy, are determined according to their definitions. The Debye-Hückel corrections are also considered in the calculation of compositions and thermodynamic properties. The transport coefficients (including electrical conductivity, viscosity, thermal conductivity) and combined diffusion coefficients (including the combined ordinary diffusion coefficient, combined electric field diffusion coefficient, combined temperature diffusion coefficient and combined pressure diffusion coefficient) are calculated based on the Chapman-Enskog theory. The newly developed Lennard-Jones like phenomenological model potential is adopted to describe the neutral-neutral and neutral-ion interactions in determining collision integrals. The net emission coefficients (NEC) of gas mixtures are calculated with considering atomic lines and continuum and molecular bands and continuum. The pressure broadening (Van der Waals broadening and the resonance broadening), Stark broadening, and Doppler broadening are taken into account in the determination of escape factors. The continuum radiation of atoms is described by radiative attachment, radiative recombination, and Bremsstrahlung. The dielectric breakdown properties (including EEDF, reduced ionization coefficient, reduced electron attachment coefficient, reduced effective ionization coefficient, and reduced critical electric field strength) of hot gas mixtures are calculated based on the two-term approximation of the Boltzmann equation. The interactions, including elastic, excitation, ionization and attachment collisions, between electrons and neutral species are taken into account in solving the Boltzmann equation. The ionization cross sections of Cu2 and CuO which are unavailable in literatures are calculated using the DM method. Compared with SF6-Cu mixtures, CO2-N2-Cu mixtures present much different thermophysical, radiation, and dielectric breakdown properties. As an arc quenching gas, CO2-N2-Cu mixtures have lower ??Cp and thermal conductivity at low temperatures but present higher ??Cp, thermal conductivity, and NEC in the medium temperature range. As an insulating medium, the hot CO2-N2-Cu mixtures have much poorer dielectric strength below 2000 K, whereas above 2000 K, they present better dielectric breakdown performance than SF6-Cu mixtures

    EGFR exon 19-deletion aberrantly regulate ERCC1 expression that may partly impaired DNA damage repair ability in non-small cell lung cancer

    Get PDF
    Background Epidermal growth factor receptor (EGFR) activating mutations are usually associated with DNA damage repair (DDR) deficiency. However, the precise mechanism has remained elusive. In this study, we aimed to investigate whether EGFR exon 19 deletion mutation downstream signals contributed to DDR deficiency by downregulation of excision repair cross-complementation group-1 (ERCC1), a key factor in DDR, expression and function. Methods We first measured cell survival, DNA damage (gamma-H2AX foci formation) and damage repair (ERCC1 and RAD51 foci formation) ability in response to DNA cross-linking drug in EGFR exon 19 deletion and EGFR wild-type cells separately. We then investigated the involvement of EGFR downstream signals in regulating ERCC1 expression and function in EGFR exon 19 deletion cells as compared with EGFR wild-type ones. Results We observed increased gamma-H2AX, but impaired ERCC1 and RAD51 nuclear foci formation in EGFR exon 19 deletion cells as compared with EGFR wild-type ones treated with DNA cross-linker. In addition, we identified that inhibition of EGFR exon 19 deletion signals increased ERCC1 expression, whereas blocked wild-type EGFR signals decreased ERCC1 expression, on both mRNA and protein levels. Furthermore, EGFR exon 19 deletion downstream signals not only inhibited ERCC1 expression but also influenced ERCC1 foci formation in response to DNA cross-linker. Conclusion Our findings indicated that the aberrant EGFR exon 19 deletion signals were not only associated with decreased expression of ERCC1 but were also involved in impaired ERCC1 recruitment in response to DNA cross-link damage, thereby providing us with more evidence for exploring the mechanism of DDR deficiency in EGFR mutant NSCLC.Peer reviewe

    c-Jun NH2-terminal kinase activation is essential for up-regulation of LC3 during ceramide-induced autophagy in human nasopharyngeal carcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autophagy is a dynamic catabolic process characterized by the formation of double membrane vacuoles termed autophagosomes. LC3, a homologue of yeast Atg8, takes part in autophagosome formation, but the exact regulation mechanism of LC3 still needs to be elucidated.</p> <p>Methods</p> <p>Ceramide-induced autophagy was determined by detecting LC3 expression with Western blotting and confocal microscopy in human nasopharyngeal carcinoma cell lines CNE2 and SUNE1. The activation of JNK pathway was assessed by Western blotting for phospho-specific forms of JNK and c-Jun. The JNK activity specific inhibitor, SP600125, and siRNA directed against JNK were used to block JNK/c-Jun pathway. ChIP and luciferase reporter analysis were applied to determine whether c-Jun was involved in the regulation of LC3 transcription.</p> <p>Results</p> <p>Ceramide-treated cells exhibited the characteristics of autophagy and JNK pathway activation. Inhibition of JNK pathway could block the ceramide-induced autophagy and the up-regulation of LC3 expression. Transcription factor c-Jun was involved in LC3 transcription regulation in response to ceramide treatment.</p> <p>Conclusions</p> <p>Ceramide could induce autophagy in human nasopharyngeal carcinoma cells, and activation of JNK pathway was involved in ceramide-induced autophagy and LC3 expression.</p

    Experimental investigation of a super performance dew point air cooler

    Get PDF
    This paper presents an experimental investigation of a super performance dew point air cooler which, by employing a super performance wet material layer, innovative heat and mass exchanger and intermittent water supply scheme, has achieved a significantly higher energy efficiency (i.e. Coefficient of Performance, COP) and a much lower electrical energy use compared to the existing air coolers of the same type. This involves the dedicated system design & construction, fully planned experimental testing under various simulated climatic conditions representing the climate of hot & dry, warm & dry, moderate, warm & humid and standard lab testing condition, testing results analysis and discussion, as well as the parallel comparison against the commercial dew point air cooler. Under the standard test condition, i.e. dry bulb temperature of 37.8 °C and coincident wet bulb temperature of 21.1 °C, the prototype cooler achieved the wet-bulb cooling effectiveness of 114% and dew-point cooling effectiveness of 75%, yielding a significantly high COP value of 52.5 at the optimal working air ratio of 0.364. The testing also indicated that the lower inlet air relative humidity led to a higher cooling efficiency, while the lower cooling output helped increase COP and cooling effectiveness (including the wet-bulb effectiveness and dew-point effectiveness) of the cooler

    MCP-1, ICAM-1 and VCAM-1 are present in early aneurysmal dilatation in experimental rats.

    Get PDF
    Recent studies have suggested that inflammation actively participates in ascending aortic aneurysm formation. The aim of the present study was to evaluate the expression changes of adhesion molecules and MMPs in an experimental model of ascending aortic aneurysm induced by ascending aorta banding in Wistar rats. Twelve rats developed aortic dilation after ascending aorta banding treatment, while nine normal animals underwent surgery without banding were used as controls. Light microscope and scanning electron microscope showed that the wall of the ascending aorta became disorganized as well as infiltration by inflammatory cells in aneurysmal rats. By using immunohistochemical techniques, a significant increase in the immunostaining of MCP-1 was observed in the aneurysmal wall as compared to the normal aortic wall. Under similar experimental conditions, we also found that the immunostaining of ICAM-1 and VCAM-1 was markedly increased in the aneurysmal wall. In addition, gelatin zymographic analysis showed that the expression and activities of MMP-2 and MMP-9 were remarkably enhanced in the ascending aorta of ascending aortic aneurysmal rats as compared to normal rats. These results demonstrate that MCP-1, ICAM-1 and VCAM-1 are involved in the pathogenesis of ascending aortic aneurysm and an increase in the immunostaining and activity of MMP-2 and MMP-9 may promote the progression of ascending aortic aneurysm
    corecore