475 research outputs found

    Towards a deep-learning-based framework of sentinel-2 imagery for automated active fire detection

    Get PDF
    This paper proposes an automated active fire detection framework using Sentinel-2 imagery. The framework is made up of three basic parts including data collection and preprocessing, deep-learning-based active fire detection, and final product generation modules. The active fire detection module is developed on a specifically designed dual-domain channel-position attention (DCPA)+HRNetV2 model and a dataset with semi-manually annotated active fire samples is constructed over wildfires that commenced on the east coast of Australia and the west coast of the United States in 2019-2020 for the training process. This dataset can be used as a benchmark for other deep-learning-based algorithms to improve active fire detection accuracy. The performance of active fire detection is evaluated regarding the detection accuracy of deep-learning-based models and the processing efficiency of the whole framework. Results indicate that the DCPA and HRNetV2 combination surpasses DeepLabV3 and HRNetV2 models for active fire detection. In addition, the automated framework can deliver active fire detection results of Sentinel-2 inputs with coverage of about 12,000 km(2) (including data download) in less than 6 min, where average intersections over union (IoUs) of 70.4% and 71.9% were achieved in tests over Australia and the United States, respectively. Concepts in this framework can be further applied to other remote sensing sensors with data acquisitions in SWIR-NIR-Red ranges and can serve as a powerful tool to deal with large volumes of high-resolution data used in future fire monitoring systems and as a cost-efficient resource in support of governments and fire service agencies that need timely, optimized firefighting plans

    InSAR reveals land deformation at Guangzhou and Foshan, China between 2011 and 2017 with COSMO-SkyMed data

    Get PDF
    Subsidence from groundwater extraction and underground tunnel excavation has been known for more than a decade in Guangzhou and Foshan, but past studies have only monitored the subsidence patterns as far as 2011 using InSAR. In this study, the deformation occurring during the most recent time-period between 2011 and 2017 has been measured using COSMO-SkyMed (CSK) to understand if changes in temporal and spatial patterns of subsidence rates occurred. Using InSAR time-series analysis (TS-InSAR), we found that significant surface displacement rates occurred in the study area varying from -35 mm/year (subsidence) to 10 mm/year (uplift). The 2011-2017 TS-InSAR results were compared to two separate TS-InSAR analyses (2011-2013, and 2013-2017). Our CSK TS-InSAR results are in broad agreement with previous ENVISAT results and levelling data, strengthening our conclusion that localised subsidence phenomena occurs at different locations in Guangzhou and Foshan. A comparison between temporal and spatial patterns of deformations from our TS-InSAR measurements and different land use types in Guangzhou shows that there is no clear relationship between them. Many local scale deformation zones have been identified related to different phenomena. The majority of deformations is related to excessive groundwater extraction for agricultural and industrial purposes but subsidence in areas of subway construction also occurred. Furthermore, a detailed analysis on the sinkhole collapse in early 2018 has been conducted, suggesting that surface loading may be a controlling factor of the subsidence, especially along the road and highway. Roads and highways with similar subsidence phenomenon are identified. Continuous monitoring of the deforming areas identified by our analysis is important to measure the magnitude and spatial pattern of the evolving deformations in order to minimise the risk and hazards of land subsidence

    A Novel General Imaging Formation Algorithm for GNSS-Based Bistatic SAR.

    Get PDF
    Global Navigation Satellite System (GNSS)-based bistatic Synthetic Aperture Radar (SAR) recently plays a more and more significant role in remote sensing applications for its low-cost and real-time global coverage capability. In this paper, a general imaging formation algorithm was proposed for accurately and efficiently focusing GNSS-based bistatic SAR data, which avoids the interpolation processing in traditional back projection algorithms (BPAs). A two-dimensional point target spectrum model was firstly presented, and the bulk range cell migration correction (RCMC) was consequently derived for reducing range cell migration (RCM) and coarse focusing. As the bulk RCMC seriously changes the range history of the radar signal, a modified and much more efficient hybrid correlation operation was introduced for compensating residual phase errors. Simulation results were presented based on a general geometric topology with non-parallel trajectories and unequal velocities for both transmitter and receiver platforms, showing a satisfactory performance by the proposed method

    Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor

    Get PDF
    Commercial wearable piezoelectric sensors possess excellent anti-interference stability due to their electronic packaging. However, this packaging renders them barely breathable and compromises human comfort. To address this issue, we develop a PVDF piezoelectric nanoyarns with an ultrahigh strength of 313.3 MPa, weaving them with different yarns to form three-dimensional piezoelectric fabric (3DPF) sensor using the advanced 3D textile technology. The tensile strength (46.0 MPa) of 3DPF exhibits the highest among the reported flexible piezoelectric sensors. The 3DPF features anti-gravity unidirectional liquid transport that allows sweat to move from the inner layer near to the skin to the outer layer in 4 s, resulting in a comfortable and dry environment for the user. It should be noted that sweating does not weaken the piezoelectric properties of 3DPF, but rather enhances. Additionally, the durability and comfortability of 3DPF are similar to those of the commercial cotton T-shirts. This work provides a strategy for developing comfortable flexible wearable electronic devices

    EUS assisted transmural cholecystogastrostomy fistula creation as a bridge for endoscopic internal gallbladder therapy using a novel fully covered metal stent

    Get PDF
    BACKGROUND: Laparoscopic cholecystectomy (LC) has become the “gold standard” for treating symptomatic gallstones. Innovative methods, such as a scarless therapeutic procedure through a natural orifice are being introduced, and include transgastric or transcolonic endoscopic cholecystectomy. However, before clinical implementation, instruments still need modification, and a more convenient treatment is still needed. The aim of this study was to evaluate the feasibility of endoscopic internal gallbladder therapy such as cholecystolithotomy in an animal survival model. METHODS: Four pigs underwent endoscopic-ultrasound (EUS)-guided cholecystogastrostomy and the placement of a novel covered mental stent. Four weeks later the stents were removed and an endoscope was advanced into the gallbladder via the fistula, and cholecystolithotomy was performed. Two weeks later the pigs were sacrificed, and the healing of the fistulas was assessed. RESULTS: EUS-guided cholecystogastrostomy with mental stent deployment was successfully performed in all the animals. Four weeks after the procedure, the fistulas had formed and all the stents were removed. Endoscopic cholecystolithotomy was performed through each fistula. All the animals survived until they were sacrificed 2 weeks later. The fistulas were found to be completely healed. CONCLUSIONS: This study reports the first endoscopic transmural cholecystolithotomy after placement of a novel mental stent in an animal survival model

    Effects of ovarian stimulation protocols on outcomes of assisted reproductive technology in adenomyosis women: a retrospective cohort study

    Get PDF
    ObjectiveTo evaluate the effects of different ovarian stimulation protocols on in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) outcomes in infertile women with adenomyosis.MethodsWe carried out a retrospective cohort study among infertile women with adenomyosis receiving IVF/ICSI treatment, including 257 fresh embryo transfer (ET) cycles and 305 frozen embryo transfer (FET) cycles. In fresh ET cycles, ultra-long, long, short, and antagonist protocols were adopted. In FET cycles, patients received long-acting GnRH agonist (GnRHa) pretreatment or not. The primary outcome was clinical pregnancy rate (CPR), and the secondary outcomes included implantation rate (IR), miscarriage rate (MR), and live birth rate (LBR).ResultsIn fresh ET cycles, compared with ultra-long and long protocols, IR (49.7%, 52.1% versus 28.2%, P=0.001) and CPR (64.3%, 57.4% versus 35.6%, P=0.004) significantly decreased in the short protocol. Similarly, compared with ultra-long and long protocols, a decreased inclination of IR (49.7%, 52.1% versus 33.3%) and CPR (57.4%, 64.3% versus 38.2%) existed in the antagonist protocol, although no statistical significance was detected because of strict P adjustment of Bonferroni method (Padj=0.008). Compared with long protocol, LBR in short protocol decreased obviously (48.2% versus 20.3%, P<0.001). In FET cycles, no matter which origin of embryos, there were no statistical differences in IR, CPR, and LBR. For women ≥35 years receiving fresh ET, CPR was higher in ultra-long and long protocols (52.1%, 50.0% versus 20.0%, 27.5%, P=0.031) compared to antagonist and short protocols. For women ≥35 years receiving FET, compared with ultra-long and antagonist protocols, cycles with embryos originating from long and short protocols had higher proportions of long-acting GnRHa pretreatment (30.4%,30.00 versus 63.9%, 51.4%, P=0.009). IR (61.1%, 48.6% versus 32.6%, 25.0%, P=0.020) and CPR (58.3%, 48.6% versus 30.4%, 25.0%, P=0.024) in long and short protocols were higher than rates of ultra-long and antagonist protocols, but no statistical differences were supported because of strict Bonferroni method (Padj=0.008).ConclusionIn infertile women with adenomyosis, if a fresh embryo was planned for transfer, an ultra-long or long protocol might be beneficial. If antagonist and short protocols were used, whole embryos frozen followed by FET was recommended. In FET cycles, embryos derived from different protocols had no impact on pregnancy outcomes
    • …
    corecore