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Abstract: This paper proposes an automated active fire detection framework using Sentinel-2 im-
agery. The framework is made up of three basic parts including data collection and preprocessing,
deep-learning-based active fire detection, and final product generation modules. The active fire
detection module is developed on a specifically designed dual-domain channel-position attention
(DCPA)+HRNetV2 model and a dataset with semi-manually annotated active fire samples is con-
structed over wildfires that commenced on the east coast of Australia and the west coast of the
United States in 2019–2020 for the training process. This dataset can be used as a benchmark for
other deep-learning-based algorithms to improve active fire detection accuracy. The performance of
active fire detection is evaluated regarding the detection accuracy of deep-learning-based models
and the processing efficiency of the whole framework. Results indicate that the DCPA and HRNetV2
combination surpasses DeepLabV3 and HRNetV2 models for active fire detection. In addition, the
automated framework can deliver active fire detection results of Sentinel-2 inputs with coverage
of about 12,000 km2 (including data download) in less than 6 min, where average intersections
over union (IoUs) of 70.4% and 71.9% were achieved in tests over Australia and the United States,
respectively. Concepts in this framework can be further applied to other remote sensing sensors
with data acquisitions in SWIR-NIR-Red ranges and can serve as a powerful tool to deal with large
volumes of high-resolution data used in future fire monitoring systems and as a cost-efficient resource
in support of governments and fire service agencies that need timely, optimized firefighting plans.

Keywords: active fire detection; Sentinel-2; multi-spectral; deep learning; dataset

1. Introduction

As a critical global phenomenon, wildfires are being exacerbated by the influence of
climate change and are causing large amounts of economic and environmental damage
each year [1]. For instance, Australia experienced one of its most devastating fire seasons
in 2019–2020, colloquially known as “Black Summer” [2]. Commencing in June 2019, the
fires were out of control across Australia from September 2019 to March 2020 causing at
least 33 deaths, a total burned area of almost 19 million hectares, and economic loss of over
103 billion AUD [3]. Likewise, the United States has also experienced a series of wildfires
since May 2020. By the end of that year, at least 46 deaths, a total burned area of over
4 million hectares, and an economic cost of almost 20 billion USD have been reported [4].
This dramatic increase in the number and severity of wildfire events around the world is
promoted by the reduced live fuel moisture content [5], soil moisture [6], precipitation [7],
and so forth, urging more than ever before the governments and fire management agencies
to develop a reliable, timely, and cost-efficient fire monitoring system [8,9] providing
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information on the status of wildfires globally. Associated Earth observation satellites
have been deployed to achieve this in two aspects: burned area mapping and active fire
detection [10–13]. This study will focus on the second aspect and detect the location of
actively burning spots during the wildfire. Most prior studies on active fire detection
take advantage of thermal infrared and mid-infrared bands with coarse spatial resolutions
acquired by sensors like the advanced very high resolution radiometer (AVHRR), moderate
resolution imaging spectroradiometer (MODIS), visible infrared imaging radiometer suite
(VIIRS), sea and land surface temperature radiometer (SLSTR), and visible and infrared
radiometer (VIRR) onboard near-polar orbit satellites or the advanced baseline imager
(ABI), spinning enhanced visible and infrared imager (SEVIRI), and space environment
data acquisition monitor (SEDI) onboard geostationary satellites [14–21]. These data
provide consistent global monitoring in near-real-time with coarse spatial resolutions
and are employed in several global monitoring systems like the Digital Earth Australia
Hotspots from Geoscience Australia (GA), the Fire Information for Resource Management
System (FIRMS) from the National Aeronautics and Space Administration (NASA), and
the European Forest Fire Information System (EFFIS) from the European Space Agency
(ESA). However, the background radiance in coarse resolution pixels tends to overwhelm
signals from subtle hotspots due to the large instantaneous field of view (IFOV), and hence
it is difficult to reveal active fires with more spatial details [22]. Further efforts have been
placed on active fire detection using medium resolution acquisitions from Landsat and/or
Sentinel-2 to increase spatial details and several algorithms have been developed based on
reflective wavelength bands [11,12,22,23]. The Landsat-8 Operational Land Imager (OLI)
data are mostly used to detect active fires at a spatial resolution of 30 m. The latest GOLI
algorithm [12] is proposed based on a statistical examination on the top of atmosphere
(TOA) reflectance of the red and SWIR bands and exhibited comparable commission error
(CE) and slightly lower omission error (OE) over visual interpretations of detected active
fire locations than other algorithms. This statistics-based method has been further applied
to the Sentinel-2 acquisitions and an active fire detection method based on Sentinel-2
(AFD-S2) [23] is proposed for active fire detection at a spatial resolution of 20 m.

Although active fire detection using satellite imagery has been well established over
the years, most detection algorithms mentioned above are based on supervised pixel-
and/or region-level comparison involving sensor-specific thresholds and neighbourhood
statistics [24]. With the increasing number of satellites launched and the volume of remote
sensing data acquired, these methods will bring massive workloads for global or regional
wildfire monitoring. Fast-growing deep-learning techniques [25] provide great tools for
large-volume remote sensing data processing, inspiring us to explore their potential in
active fire detection. This is a relatively new field and still lacks large-scale datasets and
architectures for evaluation. The first contribution to this field is based on the Landsat-8
imagery [24], which introduces a large-scale dataset to investigate how deep-learning-
based segmentation models with U-Net architecture [26] can be used to approximate the
handcrafted active fire maps. Our study will focus on investigating how deep learning
models can be applied to Sentinel-2 imagery to approximate the visual-interpretation-
based active fire detection by formulating it as a binary semantic segmentation task. A
dual-domain channel-position attention (DCPA) network is specifically designed based on
the unique characteristics of active fires in false-colour composite images to further boost
the detection accuracy. A dataset is constructed using the open-access Sentinel-2 product
collected over wildfires on the east coast of Australia and the west coast of the United
States in 2019 and 2020 for training and testing. Based on the developed best-performing
active fire detection model, an automated active fire detection framework with three basic
parts (data collection and preprocessing, deep-learning-based active fire detection, and
final product generation) is proposed. This framework can automatedly output active
fire detection results in Geotiff format using the geographic location and time inputs, and
this Geographic Information System (GIS)-preferred format can be easily visualized and
post-processed in software like ArcGIS [27], QGIS [28], etc.
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2. Test Sites and Datasets

The Sentinel-2 constellation is part of the ESA’s Copernicus Program, providing
high-quality multi-spectral Earth observations since 2015. The twin satellites share a sun-
synchronous orbit at a 786 km altitude with a repeat cycle of 10 days for one satellite and
5 days for two [29]. Each satellite carries a multi-spectral instrument (MSI) with 13 bands in
the visible, near-infrared (NIR), and short-wave infrared (SWIR) ranges [30]. Prior studies
have evidenced that active fires with larger sizes and higher temperatures normally exhibit
higher top of atmosphere (TOA) reflectances in SWIR bands with negligible contributions
in the red band [12,23]. Therefore, active fire detection using Sentinel-2 data can be realized
by filtering out pixels with high values in B12 and B11 bands and low values in B4 as in
the AFD-S2 method. Details of Sentinel-2/MSI bands involved in this study are listed in
Table 1, where all four bands are involved in the generation of ground truth annotations
during the dataset construction; B12, B11, and B8A are employed to generate the special
indices for sifting background patches in the pre-processing stage (Section 3.1); and B12-
B11-B4 are used as inputs of deep-learning models in the training and testing phases of the
active fire detection (Section 3.2).

Table 1. List of Sentinel-2/MSI band information used in this study.

Channel
Sentinel-2A Sentinel-2B Spatial

ResolutionCentral Wavelength Bandwidth Central Wavelength Bandwidth

4—Red 664.6 nm 31 nm 664.9 nm 31 nm 10 m
8A—Narrow NIR 864.7 nm 21 nm 864.0 nm 22 nm 20 m

11—SWIR 1 1613.7 nm 91 nm 1610.4 nm 94 nm 20 m
12—SWIR 2 2202.4 nm 175 nm 2185.7 nm 185 nm 20 m

A total of 135 Sentinel-2 Military Grid Reference System (MGRS) tiles over the states
of New South Wales (NSW), Australia Capital Territory (ACT), and Victoria (VIC) cov-
ering areas of about 378,543 km2 from 18 October 2019 to 14 January 2020, and 178
Sentinel-2 MGRS tiles over the state of California covering areas of about 457,594 km2 from
28 July 2020 to 12 October 2020, were used in the construction of the dataset. Figure 1a,b
illustrate Sentinel-2 coverage in Australia and the United States, respectively. The down-
loaded Sentinel visible bands have spatial resolutions of 10 m and associated NIR and
SWIR bands have spatial resolutions of 20 m. Hence, visible bands were down-sampled to
the same spatial resolution as the NIR and SWIR bands before dataset construction. Related
ground truth annotations were generated by the synergy of the AFD-S2 method and visual
inspection of Sentinel-2 false-colour composites. Visual inspection has been widely used in
prior studies to generate ground truth annotations [11,12,23,24] because actively burning
fires are ephemeral and sparsely located over a large area and therefore it is not practical to
collect a large number of ground-based measurements at the time of satellite overpass.

In AFD-S2, a single criterion in (1) was applied for the active fire detection in temperate
conifer forests on the east coast of Australia, whereas multiple criteria in (2) were used in
Mediterranean forests, woodlands, and scrubs on the west coast of the United States.

0.504 ∗ ρSWIR2 − ρRed ≥ a (1)

0.734 ∗ ρSWIR2 − ρRed ≥ b, ρSWIR2 ≥ c, ρSWIR1 ≥ d or ρSWIR2 ≥ 1.0 (2)

An important part is to determine the correct threshold to differentiate the active
fire and background pixels. In this study, a, b, c, and d were initialized as 0.198, 0.068,
0.355, and 0.475 as mentioned in [23], which were further fine-tuned referring to the visual
interpretation of B12-B11-B4 and B12-B11-B8A false-colour composites. Manual corrections
were also performed on the obvious mislabelling to reduce OEs and CEs in the generated
annotation map.
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Finally, a dataset consisting of false-colour patches and associated dense pixel annota-
tions of 2 classes (active fire and background) was constructed by clipping and sifting the
Sentinel red-SWIR composites and the associated annotation map above.
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3. Methodology
3.1. Automated Active Fire Detection Framework

Details of the proposed automated active fire detection framework are shown in
Figure 2, along with data collection and preprocessing, deep-learning-based active fire de-
tection, and product generation modules included in yellow, green, and blue
boxes, respectively.
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In the yellow box, Sentinel-2 TOA reflectance products can be automatically down-
loaded using the time and location information provided by users through the API offered
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by ESA. SWIR and red bands are composited into false-colour images with salient active
fires and the normalized hotspot index (NHI) images are generated based on (3) and
(4) [32,33] (alterations of normalized burned ratios (NBR)) as auxiliaries in the upcoming
sifting step to coarsely separate between background paddings and patches that might
have high-temperature anomalies (HTAs) like wildfires, industrial heat sources, volcanic
activities, land management fires, etc. Criteria for HTA detection here are slightly looser
than those in [32,33] to make sure cool smouldering fires are included in the generated
HTA maps. These HTA maps are further fed into the image cropping step along with the
false-colour combinations.

NHISWIR =
SWIR2 − SWIR1

SWIR2 + SWIR1
(3)

NHISWNIR =
SWIR1 − NIR
SWIR1 + NIR

(4)

All images are cropped into small patches with identical sizes and sequential identities,
which are further allocated to the active fire and background datasets, respectively. Whether
a false-colour patch is active or not is determined by checking if there is a positive value
in the associated HTA patch. This dataset splitting strategy avoids redundant processing
in the background area and hence reduces the time and memory cost of the framework.
Besides that, the synergy of image cropping and dataset splitting can effectively reduce the
imbalance between the active fire and background proportions in each false-colour patch.
In subsequent steps, active false-colour patches are fed into the trained deep-learning-
based models to generate the segmentation results while the background ones only deliver
their identities to the padding images for further splicing. The segmentation results and
associated background paddings are further projected back into the original frame to
generate final products in Geotiff format, where geographical information extracted from
the original data are added into these spliced products.

3.2. Deep-Learning-Based Active Fire Detection

Active fire pixels normally appear in bright orange in a SWIR-red false-colour image
because of the higher reflectance in SWIR bands and the lower reflectance in the red
band [11,34,35]. After igniting, fires quickly spread around and turn into local clusters of
different sizes. The sharp contrast between active fire and background allows the detection
task to be considered as a binary semantic segmentation of the false-colour image, even
though special attention needs to be paid to the unique behaviours of the active fire. For
example, OEs are usually caused by small and cool fires, CEs are likely to occur in soil-
dominated pixels or highly reflective building rooftops, and proportions of the active fire
and background pixels are unbalanced [36].

We first used two deep-learning-based semantic segmentation models with different
architectures to detect the active fire from the false-colour composite image. One of them is
the DeepLabV3+ model with an encoder-decoder architecture [37–39], where the encoder
module encodes multi-scale contextual information by applying parallel atrous convolu-
tions with different rates while the decoder recovers high-resolution representations and
refines the segmentation result along the object boundaries. Though pyramid features are
fused by the atrous spatial pyramid pooling (ASPP) module in DeepLabV3+, there are still
losses of spatial information during the feature embedding, which causes challenges in
the reconstruction of segmentation results with original sizes. The other model we used
for active fire detection is HRNetV2, which maintains the high-resolution representations
throughout the whole architecture by parallelly connecting high-to-low resolution convo-
lution streams and repeatedly exchanging information across different resolutions [40,41].
Compared with DeepLabV3+, representations in HRNetV2 have richer semantic and spa-
tial information resulting in more precise boundaries in the segmentation results. To make
HRNetV2 more applicable to the active fire detection task and better balance OEs and CEs
in detection results, a DCPA network is further proposed by connecting a dual-domain
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feature extractor to the existing HRNetV2 model using a channel-position attention block
as presented in Figure 3.
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Figure 3. The architecture of the proposed DCPA+HRNetV2 active fire detection model.

The proposal of the DCPA network was inspired by the principle of visual inspection.
Modifications mainly focus on the first few layers of the deep neural network that is
normally responsible for the extraction of simple features. During active fire detection,
human attention is automatically placed on the salient regions that present a sharp contrast
with the background. In addition, boundaries of the active fires inside are outlined using
spatial distributions and interdependences of the associated fire pixels. Attention on the
salient regions helps to locate anomalous regions and hence reduce the OEs in the sparse
and cool fires, while statistics in the spatial distribution and interdependence offer a better
distinction between active fires and surrounding pixels, which helps to reduce the CEs
caused by the ambiguity between hot soil and cooler active fire.

Therefore, a dual-domain feature extractor is first constructed in the DCPA network
as shown in the yellow box of Figure 3. The spatial feature extractor is constructed based
on the deep convolutional neural network (DCNN) [42], where a 3 × 3 convolution layer, a
1× 1 convolution layer, and a Resblock [43] are assembled to extract the spatial distribution
and interdependence among pixels. The frequency feature extractor is proposed based on
the visual saliency paradigm in [44], which mainly focuses on generating saliency maps
by smoothing the amplitude spectrum derived from the hypercomplex Fourier transform
(HFT). To construct the frequency feature extractor, we replace the imaginary parts in the
quaternion matrix f [44] with the reflectance of red and SWIR bands.

f (n, m) = ω0P0 + ω1P1i + ω2P2 j + ω3P3k (5)

P1 = ρSWIR2 , P2 = ρSWIR1 , P3 = ρRed (6)

where ω0, ω1, ω2, and ω3 are the weights of the feature matrices P0, P1, P2, and P3, and
i, j, k are imaginary units in quaternion form (i2 = j2 = k2 = ijk = −1, ij = k, ik = j, jk = i).
The motion feature P0 of a static input is equal to zero and makes no contribution to the
quaternion matrix f . Weights of spectral feature matrices are set as ω1 = 0.2, ω2 = 0.4, and
ω3 = 0.4. The HFT of the quaternion matrix f can be generated through

FH [u, v] =
1√
MN

M−1

∑
m=0

N−1

∑
n=0

e−µ2π(mv/M+nu/N) f (n, m) = A(u, v)eχΦ(u,v) (7)

where µ = (i + j + k)/
√

3 is a unit pure quaternion, A(u, v) and Φ(u, v) are the amplitude
and phase spectrums of FH [u, v], and χ is a pure quaternion matrix as the eigenaxis
spectrum [45]. It has been proven that texture-rich salient regions like active fire are
more likely to be embedded in the background of the amplitude spectrum whereas the
repeated and uniform patterns such as the spatial background are prone to appear as sharp
spikes [46]. Therefore, frequency features of different salient regions can be effectively
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enhanced by smoothing the amplitude spectrum with a series of Gaussian kernels {gk} at
different scales [44].

gk(u, v) =
1√

2π2k−1τ0
e−(u

2+v2)/(22k−1τ2
0 ) (8)

Λk(u, v) = (gk(u, v) ? A)(u, v) (9)

where τ0 = 0.5, k = 1, . . . , log2min{H, W}+ 1, and H and W are the height and width of
the image. Then, the saliency maps

{
sk ∈ RH×W} can be generated by the inversed HFT.

sk =

∥∥∥∥∥ 1√
MN

M−1

∑
v=0

N−1

∑
u=0

eµ2π(mv/M+nu/N)Λk(u, v)eχΦ(u,v)

∥∥∥∥∥
2

(10)

Outputs of the dual-domain feature extractor constitute a feature stack S ∈ RH×W×C

with a channel depth of C, which is further recalibrated by the channel-position atten-
tion as shown in the green box of Figure 3. The channel-position attention consists of a
channel-wise and a position-wise squeeze-and-excitation (SE) block [47], which explicitly
model interdependencies between channels or positions and use the global information
to selectively emphasize informative features and suppress less useful ones. In the yel-
low stream, the global channel information is first squeezed into a position descriptor by
average pooling in the channel dimension.

x = F′sq(S) =
1
C

C

∑
k=1

S(:, :, k) (11)

An excitation operation is further performed on the squeezed output x to capture the
position-wise dependencies. This is achieved by a simple gating mechanism with the ReLU
activation function δ(·).

x1 = F′ex(x) = δ(W1(δ(W2x))) (12)

where W1 ∈ RH×W× H×W
d and W2 ∈ R

H×W
d ×H×W are the weights of the two convolution

layers with d set as 256 for the best performance. The output of the yellow stream S′ is
then obtained by rescaling S with the excitation output x1.

In the red stream, the average pooling is initially applied in the spatial dimension
to obtain the squeezed channel descriptor. This is followed by an excitation operation to
obtain the channel-wise dependencies.

y = F′′sq(S) =
1

H ×W

H

∑
i=1

W

∑
j=1

S(i, j, :) (13)

y1 = F′′ex(y) = σ(W3(δ(W4y))) (14)

where, σ(·) is the sigmoid activation function, and W3 ∈ RC× C
r and W4 ∈ R C

r ×C are the
weights of the two fully connected layers with r = 16 for the best performance. Likewise,
the output of this stream S′′ is obtained by rescaling S with the excitation output y1. The
original feature stack S is maintained through the green stream in the fusion process to
tackle the gradient vanishing issue and to boost feature discriminability. The outputs of
these three streams are then weighted summed to generate the segmentation input.

S̃ = S + αS′ + βS′′ (15)

where α and β are initialized as 0 and gradually increase during the training process. The
weighted feature S̃ is then fed into the HRNetV2 model to obtain the active fire detection
result.
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3.3. Evaluation Metrics

Quantitative metrics commonly used in semantic segmentation and active fire de-
tection such as CE, OE, and intersection over union (IoU) are calculated to evaluate the
performance. All these metrics can be directly derived from the elements in the confusion
matrix, which are the numbers of true positive (TP), false positive (FP), true negative (TN),
and false negative (FP) pixels. In an active fire detection task, TP denotes the correctly
labelled active fire pixel, FP is the background pixel incorrectly labelled as active fire, TN
stands for the correctly labelled background pixel, and FN is the active fire pixel incorrectly
labelled as background.

Based on Table 2, the IoU, CE, and OE can be calculated as

IoU =
TP

TP + FP + FN
, CE =

FP
TP + FP

, OE =
FN

TP + FN
(16)

Table 2. Confusion matrix in active fire detection.

Classified

Reference
Active Fire Background

Active Fire TP FP
Background FN TN

3.4. Implementation Details

The deep-learning-based models (DeepLabV3+, HRNetV2, DCPA+HRNetV2) for
active fire detection were trained and tested on the constructed dataset. After clipping
and sifting, this dataset had 37,016 samples with 21,342 of them from Australia (AU)
and 15,674 of them from the United States (US). These patches were randomly divided
into three subsets with 60% for training, 10% for validation, and the remaining 30% for
testing. Each sample in the constructed dataset had a false-colour patch with the size of
128 × 128 × 3 and a dense pixel annotation with the size of 128 × 128. During the
training process, inputs were augmented by random flipping and rotating and an Adam
optimizer [48] was initialized with a base learning rate of 0.01 and a weight decay of 0.0005.
The poly learning rate policy with the power of 0.9 was used to drop the learning rate. All
experiments were implemented in the PyTorch framework on two NVIDIA GeForce RTX
2080Ti GPUs with a batch size of 16.

4. Experiment Results
4.1. Deep-Learning-Based Active Fire Detection

To illustrate the performance of three deep-learning-based semantic segmentation
models (DeepLabV3+, HRNet-V2, and DCPA+HRNetV2) on the active fire detection task,
sample outputs of these three models are first shown in Figure 4. Related accuracy metrics
were calculated over the testing dataset (see Section 3.4) and are listed in Table 3 along
with the backbone used in each model. Referring to [38], Xception-71 with one entry flow,
multiple middle flows, and one exit flow was used as the backbone in the DeepLabV3+
model, where all the max pooling operations in the original Xception [49] were replaced by
a combination of depthwise separable convolution with striding, batch normalization [50],
and ReLU [51]. Following [41], HRNetV2-W48 with four stages was used as the backbone in
DCPA+HRNetV2 and HRNetV2. Each stage is composed of repeated modularized blocks
in branches associated with different resolutions, where the multi-resolution features are
fused by the fusion unit [40].
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Figure 4. Active fire samples (false-colour composite and annotation) and the associated segmentation
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Table 3. Accuracy metrics of the active fire detection results.

Model Backbone OE a CE a IoU a OE b CE b IoU b

DeepLabV3+ Xception-71 7.6% 28.1% 67.8% 9.1% 25.3% 69.5%
HRNetV2 HRNetV2-W48 18.5% 14.2% 71.8% 19.0% 11.5% 73.2%

DCPA+HRNetV2 HRNetV2-W48 17.3% 13.1% 73.4% 17.4% 9.2% 76.2%
a East coast of Australia (AU); b west coast of the United States (US).

Active fire detection results in Figure 4 indicate that HRNetV2 models focus more on
the spatial details in the segmentation result compared with the DeepLabV3+ by paying
more attention to depicting boundaries and edges and preserving high spatial resolution
representations in the propagation. For example, as presented in the white boxes of
Figure 4, background areas between adjacent small fires are likely to be mislabelled as
fire areas in DeepLabV3+ results, because details of these adjacent small fires are merged
during the semantic information extraction and are not properly recovered through the
decoder. This inevitably increases the CE in DeepLabV3+ results as indicated in Table 3.
Though the CE in HRNetV2 results is much lower than in DeepLabV3+, a higher OE can
be observed because too much attention has been paid to describing the boundaries of
high-temperature active fires and thus the small and cooler fires have been neglected. As
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shown in the first row of Figure 4, the isolated small fire has been detected by DeepLabV3+
but not by HRNetV2. This is the main reason for introducing the DCPA network, which
can focus on the salient area and meanwhile properly allocate attention to small or/and
cooler fires during the segmentation. It is evidenced in both results in Figure 4 and Table 3
that the introduction of the DCPA network helps to locate sparse and isolated active fires
with only a few pixels and balance the OEs and CEs for a better IoU.

4.2. Automated Active Fire Detection Framework

The best-performing DCPA+HRNetV2 model was assembled into the proposed frame-
work for the automated active fire detection based on Sentinel-2 imagery. Results were
automatically generated in Geotiff format through inputting locations of the bounding box
and the time of the fire event. With the details listed in Table 4, tests were carried out on the
east coast of Australia and the west coast of the United States. Final products were zoomed
into areas with dense active fire pixels and laid over the false-colour base image in ArcMap
as presented in Figure 5.

Table 4. Detection accuracy and processing efficiency of the automated framework.

East Coast of Australia

Acquisition Date 2020-01-15 2020-01-25 2020-01-28 2020-01-30
Top Left a −35.5, 148.7 −37.3, 148.5 −36.3, 147.6 −34.8, 148.7

Top Right a −35.5, 150.2 −37.3, 149.2 −36.3, 148.7 −34.8, 150.6
Bottom Left a −36.8, 148.7 −37.8, 148.5 −36.9, 147.6 −37.6, 148.7

Bottom Right a −36.8, 150.2 −37.8, 149.2 −36.9, 148.7 −37.6, 150.6
IoU 71.4% 71.1% 70.2% 68.7%

Time Cost 358 s 105 s 133 s 839 s

West Coast of the United States

Acquisition Date 2020-10-13 2020-10-18 2020-10-28 2020-10-29
Top Left a 37.2, −119.4 37.6, −118.9 37.6, −119.4 41.9, −123.7

Top Right a 37.2, −118.6 37.6, −118.2 37.6, −118.9 41.9, −123.3
Bottom Left a 36.7, −119.4 37.3, −118.9 37.3, −119.4 41.0, −123.7

Bottom Right a 36.7, −118.6 37.3, −118.2 37.6, −118.9 41.0, −123.3
IoU 72.6% 71.3% 73.0% 70.8%

Time Cost 58 s 51 s 46 s 132 s
a Location of the corner pixels (latitude, longitude) in UTM projection and WGS84 geodetic system.

Evaluation of the proposed automated active fire detection framework was carried
out concerning detection accuracy and processing efficiency. As indicated in Table 4, the
automated active fire detection framework achieved average IoUs of 70.4% over Australia
and 71.9% over the United States. The most time-consuming parts of the framework are
the data collection and active fire detection steps. For a Sentinel-2 input with total coverage
of around 12,000 km2, it takes about 350 s to obtain the final output with the active fire
detection process taking up 140 s. This time-consuming detection process underlines the
necessity of the active fire and background dataset separation in the preprocessing module.
All the operations above were undertaken in configurations of an Intel Core i7-9700k
processer with a base frequency of 3.60 GHZ, NVIDIA GeForce RTX 2080Ti GPU, and a
system memory of 64 GB.
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5. Discussion

The accuracy of the active fire product generated by the proposed automated frame-
work can be affected by several factors including the segmentation algorithm, annotation
method, data preprocessing step, data source, etc. First of all, compared with semantic
segmentation applications in other fields, active fire detection can be simplified as a binary
segmentation task, although it is of increased difficulty as it deals with a large number
of small fire objects. These small fires will increase the possibility of OE in the result. In
addition, labels in the constructed dataset are derived from the synergy of the AFD-S2
method and visual inspection of Sentinel-2 band combinations. Although the time and
labour involved are significantly reduced by this synergy, there are still some omitted
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small and cool fires with lower radiances or mislabelled soil-dominated pixels and highly
reflective building rooftops derived from the AFD-S2 method that are not corrected dur-
ing the visual inspection. This may cause deep-learning-based models to learn incorrect
semantic patterns during active fire detection and thus lead to OE and CE in the result.
Moreover, although criteria for the HTA detection are slightly loosened during the splitting
of the active fire patch and background padding, there are still some cool smouldering
fires that are not included in the generated HTA map, and hence misclassified into the
background dataset. Another source of error is intrinsic in the SWIR/Red-based active fire
detection, which mainly uses the sharp contrast between high-temperature active fire and
background in TOA bands. However, the existence of heat radiation results in ambiguities
between classes affecting the classification accuracy of pixels along edges, and consequently
introduces errors in the segmentation results. By way of example, Figure 6 zooms over
areas with small and cool fires and highly reflective building rooftops to present the OEs
and CEs in the results.
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Despite the aforementioned errors, the proposed framework outperforms the current
fire monitoring systems described in Section 1 in terms of delivering spatial details, which
can help to calibrate or/and improve the current low-resolution results. Figure 7 gives
an example of our Sentinel-2 and the MODIS Collection 6.1 [17] active fire products.
Associated Sentinel-2 and MODIS acquisitions are collected on the same day over the same
area. It can be concluded that the MODIS active fire product can only provide a coarse
depiction of the active fire because of the low spatial resolution of 1 km. Our Sentinel-2
product, however, offers more detail (location, boundary, and shape, etc.) on active fires
even for small fires.
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6. Conclusions

An automated active fire detection framework with data collection and preprocess-
ing, deep-learning-based active fire detection, and final product generation modules was
developed in this research serving as a prototypical function for a future fire monitoring
system. The active fire detection module in the framework was developed on a specifically
designed DCPA+HRNetV2 network, which is trained on the dataset constructed using
SWIR, NIR, and red bands in Sentinel-2 Level-2C products. Results indicate that this
DCPA and HRNetV2 combination outperformed DeepLabV3 and HRNetV2 models on
the active fire detection, and the automated framework can effectively deliver active fire
detection results with an average IoU higher than 70%. Although in the current state the
refresh rate of this framework is only 5 days and it is only suitable for inputs of Sentinel-2
acquisitions over the east coast of Australia and the west coast of the United States, the
spatial resolution (20 m) of the outputs is much higher than the results derived from current
fire systems. With the launch of more and more high-resolution and super-spectral sensors
onboard remote sensing satellites, high-quality and near-real-time Earth observations will
be achieved in the future. At that time, an automated framework like this will offer a
powerful tool and a cost-efficient resource in support of the governments and fire service
agencies that need timely, optimized firefighting plans.
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