8 research outputs found

    A novel approach to detect resistance mechanisms reveals FGR as a factor mediating HDAC inhibitor SAHA resistance in B-cell lymphoma

    No full text
    Histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) are not commonly used in clinical practice for treatment of B‐cell lymphomas, although a subset of patients with refractory or relapsed B‐cell lymphoma achieved partial or complete remissions. Therefore, the purpose of this study was to identify molecular features that predict the response of B‐cell lymphomas to SAHA treatment. We designed an integrative approach combining drug efficacy testing with exome and captured target analysis (DETECT). In this study, we tested SAHA sensitivity in 26 B‐cell lymphoma cell lines and determined SAHA‐interacting proteins in SAHA resistant and sensitive cell lines employing a SAHA capture compound (CC) and mass spectrometry (CCMS). In addition, we performed exome mutation analysis. Candidate validation was done by expression analysis and knock‐out experiments. An integrated network analysis revealed that the Src tyrosine kinase Gardner‐Rasheed feline sarcoma viral (v‐fgr) oncogene homolog (FGR) is associated with SAHA resistance. FGR was specifically captured by the SAHA‐CC in resistant cells. In line with this observation, we found that FGR expression was significantly higher in SAHA resistant cell lines. As functional proof, CRISPR/Cas9 mediated FGR knock‐out in resistant cells increased SAHA sensitivity. In silico analysis of B‐cell lymphoma samples (n = 1200) showed a wide range of FGR expression indicating that FGR expression might help to stratify patients, which clinically benefit from SAHA therapy. In conclusion, our comprehensive analysis of SAHA‐interacting proteins highlights FGR as a factor involved in SAHA resistance in B‐cell lymphoma

    Infection exposure promotes ETV6-RUNX1 precursor B-cell leukemia via impaired H3K4 demethylases

    No full text
    ETV6-RUNX1 is associated with the most common subtype of childhood leukemia. As few ETV6-RUNX1 carriers develop precursor B-cell acute lymphocytic leukemia (pB-ALL), the underlying genetic basis for development of full-blown leukemia remains to be identified, but the appearance of leukemia cases in time-space clusters keeps infection as a potential causal factor. Here, we present in vivo genetic evidence mechanistically connecting preleukemic ETV6-RUNX1 expression in hematopoetic stem cells/precursor cells (HSC/PC) and postnatal infections for human-like pB-ALL. In our model, ETV6-RUNX1 conferred a low risk of developing pB-ALL after exposure to common pathogens, corroborating the low incidence observed in humans. Murine preleukemic ETV6-RUNX1 pro/preB cells showed high Rag1/2 expression, known for human ETV6-RUNX1 pB-ALL. Murine and human ETV6-RUNX1 pB-ALL revealed recurrent genomic alterations, with a relevant proportion affecting genes of the lysine demethylase (KDM) family. KDM5C loss of function resulted in increased levels of H3K4me3, which coprecipitated with RAG2 in a human cell line model, laying the molecular basis for recombination activity. We conclude that alterations of KDM family members represent a disease-driving mechanism and an explanation for RAG off-target cleavage observed in humans. Our results explain the genetic basis for clonal evolution of an ETV6-RUNX1 preleukemic clone to pB-ALL after infection exposure and offer the possibility of novel therapeutic approaches.J. Hauer has been supported by the German Children's Cancer Foundation, DJCLS 02R/2016, KKS A2016/07 and from the “Forschungskommission” of the medical faculty of the Heinrich Heine University. M. Müschen is an HHMI Faculty Scholar (HHMI-55108547) and supported by NIH/NCI through an Outstanding Investigator Award (R35CA197628) to M. Müschen, a Wellcome Trust Senior Investigator Award, the Leukemia and Lymphoma Society, the California Institute for Regenerative Medicine, the William Lawrence and Blanche Hughes Foundation. A. Borkhardt has been supported by the German Children's Cancer Foundation and the Federal Ministry of Education and Research, Bonn, Germany. Research in I. Sánchez-García's group is partially supported by FEDER and by MINECO (SAF2012-32810, SAF2015-64420-R and Red de Excelencia Consolider OncoBIOSAF2014-57791-REDC), Instituto de Salud Carlos III (PIE14/00066), ISCIII- Plan de Ayudas IBSAL 2015 Proyectos Integrados (IBY15/00003), by Junta de Castilla y León (BIO/SA51/15, CSI001U14, UIC-017, and CSI001U16), Fundacion Inocente Inocente and by the ARIMMORA project (European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 282891). I. Sánchez-García's lab is a member of the EuroSyStem and the DECIDE Network funded by the European Union under the FP7 program. A. Borkhardt and I. Sánchez-García have been supported by the German Carreras Foundation (DJCLS R13/26). Research in C. Vicente-Dueñas' group is partially supported by a “Miguel Servet” grant (CP14/00082-AES 2013-2016-FEDER) from the Instituto de Salud Carlos III (Ministerio de Economía y Competitividad) and by the Lady Tata International Award for Research in Leukaemia 2016–2017. A. Martín-Lorenzo and G. Rodríguez-Hernández were supported by FSE-Conserjería de Educación de la Junta de Castilla y León (CSI001-13 and CSI001-15, respectively).Peer Reviewe

    Infection Exposure Promotes ETV6-RUNX1 Precursor B-cell Leukemia via Impaired H3K4 Demethylases

    No full text
    ETV6-RUNX1 is associated with the most common subtype of childhood leukemia. As few ETV6-RUNX1 carriers develop precursor B cell acute lymphocytic leukemia (pB-ALL), the underlying genetic basis for development of full-blown leukemia remains to be identified, but the appearance of leukemia cases in time-space clusters keeps infection as a potential causal factor. Here we present in vivo genetic evidence mechanistically connecting preleukemic ETV6-RUNX1 expression in hematopoetic stem cells/peripheral cells (HSC/PC) and postnatal infections for human-like pB-ALL. In our model, ETV6-RUNX1 conferred a low risk of developing pB-ALL after exposure to common pathogens, corroborating the low incidence observed in humans. Murine preleukemic ETV6-RUNX1 pro/preB cells showed high Rag1/2 expression, known for human ETV6-RUNX1 pB-ALL. Murine and human ETV6-RUNX1 pB-ALL revealed recurrent genomic alterations, with a relevant proportion affecting genes of the lysine demethylase (KDM) family. KDM5C loss-of-function resulted in increased levels of H3K4me3, which co-precipitated with RAG2 in a human cell line model, laying the molecular basis for recombination activity. We conclude that alterations of KDM family members represent a disease-driving mechanism and an explanation for RAG off-target cleavage observed in humans. Our results explain the genetic basis for clonal evolution of an ETV6-RUNX1 preleukemic clone to pB-ALL after infection exposure and offer the possibility of novel therapeutic approaches
    corecore