341 research outputs found
Einfluss von wärmebehandlungen auf das gefüge und die korrosionsbeständigkeit von mangan-aluminium-bronzen
The analyses have shown that the corrosion behavior of manganese-aluminum bronzes (MAB) can be improved by keeping the fraction of β phase low. As opposed to the cast structure, the sample annealed at 850 °C and water quenched does not only contain coarse α and β phase but also a fine α/β phase mixture. The κ phase is coarsened. After annealing at 600 °C, not only isolated coarse α phase but also a fine α/β phase mixture is present. The κ phase has a globular appearance. Since, at an Al content of 7 wt. %, the alloy is located in a three-phase region consisting of α, β, and κ phase, the β phase is preserved even at slow cooling. In both corrosive media, SFW and SSW, predominantly selective corrosion takes place after which, similar to the dezincification of brass, metallic copper remains (so-called dealloying). The heat treatments show different effects on the corrosion behavior in fresh water or sea water. In fresh water, both heat treatments result in a deterioration of the corrosion resistance. Here, the α-β phase mixture, the β phase, and the κ phase were attacked. Measurements in sea water revealed a deterioration of the durability after annealing at 850 °C, but an improvement after annealing at 600 °C. Since no coarse β phase is observed after slow cooling, the MAB corrosion resistance, especially to sea water, can thus be improved
Chemoenzymatic synthesis of glycosaminoglycans: Re-creating, re-modeling and re-designing nature's longest or most complex carbohydrate chains
Glycosaminoglycans (GAGs) are complex polysaccharides composed of hexosamine-containing disaccharide repeating units. The three most studied classes of GAGs, heparin/heparan sulfate, hyaluronan and chondroitin/dermatan sulfate, are essential macromolecules. GAGs isolated from animal and microbial sources have been utilized therapeutically, but naturally occurring GAGs are extremely heterogeneous limiting further development of these agents. These molecules pose difficult targets to construct by classical organic syntheses due to the long chain lengths and complex patterns of modification by sulfation and epimerization. Chemoenzymatic synthesis, a process that employs exquisite enzyme catalysts and various defined precursors (e.g. uridine 5′-diphosphosphate-sugar donors, sulfate donors, acceptors and oxazoline precursors), promises to deliver homogeneous GAGs. This review covers both theoretical and practical issues of GAG oligosaccharide and polysaccharide preparation as single molecular entities and in library formats. Even at this early stage of technology development, nearly monodisperse GAGs can be made with either natural or artificial structures
Unbound states of 32Cl and the 31S(p,\gamma)32Cl reaction rate
The 31S(p,\gamma)32Cl reaction is expected to provide the dominant break-out
path from the SiP cycle in novae and is important for understanding enrichments
of sulfur observed in some nova ejecta. We studied the 32S(3He,t)32Cl
charge-exchange reaction to determine properties of proton-unbound levels in
32Cl that have previously contributed significant uncertainties to the
31S(p,\gamma)32Cl reaction rate. Measured triton magnetic rigidities were used
to determine excitation energies in 32Cl. Proton-branching ratios were obtained
by detecting decay protons from unbound 32Cl states in coincidence with
tritons. An improved 31S(p,\gamma)32Cl reaction rate was calculated including
robust statistical and systematic uncertainties
γ spectroscopy of states in Cl 32 relevant for the S 31 (p,γ) Cl 32 reaction rate
Background: The S31(p,γ)Cl32 reaction becomes important for sulfur production in novae if the P31(p,α)Si28 reaction rate is somewhat greater than currently accepted. The rate of the S31(p,γ)Cl32 reaction is uncertain, primarily due to the properties of resonances at Ec.m.=156 and 549 keV. Purpose: We precisely determined the excitation energies of states in Cl32 through high-resolution γ spectroscopy including the two states most important for the S31(p,γ)Cl32 reaction at nova temperatures. Method: Excited states in Cl32 were populated using the B10(Mg24,2n)Cl32 reaction with a Mg24 beam from the ATLAS facility at Argonne National Laboratory. The reaction channel of interest was selected using recoils in the Fragment Mass Analyzer, and precise level energies were determined by detecting γ rays with Gammasphere. Results: We observed γ rays from the decay of six excited states in Cl32. The excitation energies for two unbound levels at Ex=1738.1 (6) keV and 2130.5 (10) keV were determined and found to be in agreement with a previous high-precision measurement of the S32(He3,t)Cl32 reaction [1]. Conclusions: An updated S31(p,γ)Cl32 reaction rate is presented. With the excitation energies of important levels firmly established, the dominant uncertainty in the reaction rate at nova temperatures is due to the strength of the resonance corresponding to the 2131-keV state in Cl32
Effect of Simultaneous Steam Explosion and Alkaline Depolymerization on Corncob Lignin and Cellulose Structure
Simultaneous steam explosion and alkaline depolymerization was studied to develop an economic and green process for alkaline pretreatment of lignocellulose. Steam explosion facilitated alkaline delignification and decreased the amount of alkali used during pretreatment. Different amounts of lignin and hemicellulose were removed within 5 min by using different sodium hydroxide concentrations and steam explosion severity. The main component of lignin collected using our simultaneous process was acid-insoluble lignin, reaching a purity of 84 %. Structural analysis indicated that steam explosion and sodium hydroxide had a synergistic effect on the removal of lignin and hemicellulose from corncob. The effect to four simultaneous pretreatment process of delignification transformed cellulose I to cellulose II, enhancing the enzymatic conversion of cellulose to glucose from 22 % to 96 %. The process of simultaneous steam explosion and alkaline depolymerization shows a potential for application in the lignocellulose biorefinery
Chemoenzymatic Synthesis of Homogeneous Ultralow Molecular Weight Heparins
Ultralow molecular weight (ULMW) heparins are sulfated glycans that are clinically used to treat thrombotic disorders. ULMW heparins range from 1500 to 3000 daltons, corresponding from 5 to 10 saccharide units. The commercial drug Arixtra (fondaparinux sodium) is a structurally homogeneous ULMW heparin pentasaccharide that is synthesized through a lengthy chemical process. Here, we report 10- and 12-step chemoenzymatic syntheses of two structurally homogeneous ULMW heparins (MW = 1778.5 and 1816.5) in 45 and 37% overall yield, respectively, starting from a simple disaccharide. These ULMW heparins display excellent in vitro anticoagulant activity and comparable pharmacokinetic properties to Arixtra, as demonstrated in a rabbit model. The chemoenzymatic approach is scalable and shows promise for a more efficient route to synthesize this important class of medicinal agent
Glucosylation of Sucrose Laurate with Cyclodextrin Glucanotransferase
Sucrose monolauroyl esters were found to serve as substrates for cyclodextrin glucanotransferase (CGTase)-catalyzed transglucosidation reactions, affording new sucrose esters that have an additional 1-3 glucose residues on the pyranose ring of the sucrose moiety in the ester
Dissecting the substrate recognition of 3-O-sulfotransferase for the biosynthesis of anticoagulant heparin
Heparin is a polysaccharide-based natural product that is used clinically as an anticoagulant drug. Heparan sulfate 3-O-sulfotransferase (3-OST) is an enzyme that transfers a sulfo group to the 3-OH position of a glucosamine unit. 3-OST is present in multiple isoforms, and the polysaccharides modified by these different isoforms perform distinct biological functions. 3-OST isoform 1 (3-OST-1) is the key enzyme for the biosynthesis of anticoagulant heparin. Here, we report the crystal structure of the ternary complex of 3-OST-1, 3′-phosphoadenosine 5′-phosphate, and a heptasaccharide substrate. Comparisons to previously determined structures of 3-OST-3 reveal unique binding modes used by the different isoforms of 3-OST for distinguishing the fine structures of saccharide substrates. Our data demonstrate that the saccharide substrates display distinct conformations when interacting with the different 3-OST isoforms. Site-directed mutagenesis data suggest that several key amino residues, including Lys259, Thr256, and Trp283 in 3-OST-3 and Arg268 in 3-OST-1, play important roles in substrate binding and specificity between isoforms. These results deepen our understanding of the biosynthetic mechanism of heparan sulfate and provide structural information for engineering enzymes for an enhanced biosynthetic approach to heparin production
Heparin and Heparan Sulfate: Analyzing Structure and Microheterogeneity [chapter]
available in PMC 2013 August 28The structural microheterogeneity of heparin and heparan sulfate is one of the major reasons for the multifunctionality exhibited by this class of molecules. In a physiological context, these molecules primarily exert their effects extracellularly by mediating key processes of cellular cross-talk and signaling leading to the modulation of a number of different biological activities including development, cell proliferation, and inflammation. This structural diversity is biosynthetically imprinted in a nontemplate-driven manner and may also be dynamically remodeled as cellular function changes. Understanding the structural information encoded in these molecules forms the basis for attempting to understand the complex biology they mediate. This chapter provides an overview of the origin of the structural microheterogeneity observed in heparin and heparan sulfate, and the orthogonal analytical methodologies that are required to help decipher this information
- …