17 research outputs found

    Modeling Elasticity in Crystal Growth

    Full text link
    A new model of crystal growth is presented that describes the phenomena on atomic length and diffusive time scales. The former incorporates elastic and plastic deformation in a natural manner, and the latter enables access to times scales much larger than conventional atomic methods. The model is shown to be consistent with the predictions of Read and Shockley for grain boundary energy, and Matthews and Blakeslee for misfit dislocations in epitaxial growth.Comment: 4 pages, 10 figure

    Genetically encoded photocross-linkers determine the biological binding site of exendin-4 peptide in the N-terminal domain of the intact human glucagon-like peptide-1 receptor (GLP-1R)

    Get PDF
    The glucagon-like peptide-1 receptor (GLP-1R) is a key therapeutic target in the management of type II diabetes mellitus, with actions including regulation of insulin biosynthesis and secretion, promotion of satiety, and preservation of β-cell mass. Like most class B G protein-coupled receptors (GPCRs), there is limited knowledge linking biological activity of the GLP-1R with the molecular structure of an intact, full-length, and functional receptor·ligand complex. In this study, we have utilized genetic code expansion to site-specifically incorporate the photoactive amino acid p-azido-l-phenylalanine (azF) into N-terminal residues of a full-length functional human GLP-1R in mammalian cells. UV-mediated photolysis of azF was then carried out to induce targeted photocross-linking to determine the proximity of the azido group in the mutant receptor with the peptide exendin-4. Cross-linking data were compared directly with the crystal structure of the isolated N-terminal extracellular domain of the GLP-1R in complex with exendin(9–39), revealing both similarities as well as distinct differences in the mode of interaction. Generation of a molecular model to accommodate the photocross-linking constraints highlights the potential influence of environmental conditions on the conformation of the receptor·peptide complex, including folding dynamics of the peptide and formation of dimeric and higher order oligomeric receptor multimers. These data demonstrate that crystal structures of isolated receptor regions may not give a complete reflection of peptide/receptor interactions and should be combined with additional experimental constraints to reveal peptide/receptor interactions occurring in the dynamic, native, and full-length receptor state

    Wang-Landau simulation of GĹŤ model molecules

    No full text
    GĹŤ-like models are one of the oldest protein modeling concepts in computational physics and have proven their value over and over for forty years. The essence of a GĹŤ model is to define a native contact matrix for a well-defined low-energy polymer configuration, e.g., the native state in the case of proteins or peptides. Many different potential shapes and many different cut-off distances in the definition of this native contact matrix have been proposed and applied. We investigate here the physical consequences of the choice for this cut-off distance in the GĹŤ models derived for a square-well tangent sphere homopolymer chain. For this purpose we are performing flat-histogram Monte Carlo simulations of Wang-Landau type, obtaining the thermodynamic and structural properties of such models over the complete temperature range. Differences and similarities with GĹŤ models for proteins and peptides are discussed

    Folding Dynamics of the Trp-Cage Miniprotein: Evidence for a Native-Like Intermediate from Combined Time-Resolved Vibrational Spectroscopy and Molecular Dynamics Simulations

    No full text
    Trp-cage is a synthetic 20-residue miniprotein which folds rapidly and spontaneously to a well-defined globular structure more typical of larger proteins. Due to its small size and fast folding, it is an ideal model system for experimental and theoretical investigations of protein folding mechanisms. However, Trp-cage's exact folding mechanism is still a matter of debate.,Here we investigate Trp-cage's relaxation dynamics in the amide I' spectral region (1530- 1700 cm(-1)) using time-resolved infrared spectroscopy. Residue-specific information was obtained by incorporating an isotopic label (C-13=O-18) into the amide carbonyl group of residue Gly11, thereby spectrally isolating an individual 3(10)-helical residue. The folding unfolding equilibrium is perturbed using a nanosecond temperature jump (T jump), and the subsequent re-equilibration is probed by observing the time dependent vibrational response in the amide I' region. We observe bimodal relaxation kinetics with time constants of 100 +/- 10 and 770 +/- 40 ns at 322 K, suggesting that the folding involves an intermediate state, the character of which can be determined from the time and frequency resolved data We find that the relaxation dynamics close to the melting temperature involve fast fluctuations in the polyproline II region, whereas the slower process can be attributed to conformational rearrangements due to the global (un)folding transition of the protein. Combined analysis of our T-jump data and molecular dynamics simulations indicates that the formation of a well-defined alpha-helix precedes the rapid formation of the hydrophobic cage structure, implying a native like folding intermediate, that Mainly differs from the folded conformation in the orientation of the C-terminal polyproline II helix relative to the N-terminal part of the backbone., We find that the main free energy barrier is positioned between the folding intermediate and the unfolded state ensemble, and that it involves the formation of the alpha-helix, the 3(10)-helix, and the Asp9- Arg16 salt bridge. Our results suggest that at low temperature (T << T-m) a folding path via formation of alpha-helical contacts followed by hydrophobic clustering becomes more important
    corecore