503 research outputs found

    Medical Education Cooperation with Cuba Estados Unidos

    Get PDF

    Efficient Probabilistic and Geometric Anatomical Mapping Using Particle Mesh Approximation on GPUs

    Get PDF
    Deformable image registration in the presence of considerable contrast differences and large size and shape changes presents significant research challenges. First, it requires a robust registration framework that does not depend on intensity measurements and can handle large nonlinear shape variations. Second, it involves the expensive computation of nonlinear deformations with high degrees of freedom. Often it takes a significant amount of computation time and thus becomes infeasible for practical purposes. In this paper, we present a solution based on two key ideas: a new registration method that generates a mapping between anatomies represented as a multicompartment model of class posterior images and geometries and an implementation of the algorithm using particle mesh approximation on Graphical Processing Units (GPUs) to fulfill the computational requirements. We show results on the registrations of neonatal to 2-year old infant MRIs. Quantitative validation demonstrates that our proposed method generates registrations that better maintain the consistency of anatomical structures over time and provides transformations that better preserve structures undergoing large deformations than transformations obtained by standard intensity-only registration. We also achieve the speedup of three orders of magnitudes compared to a CPU reference implementation, making it possible to use the technique in time-critical applications

    Identification of the protein kinases Pyk3 and Phg2 as regulators of the STATc-mediated response to hyperosmolarity

    Get PDF
    Cellular adaptation to changes in environmental osmolarity is crucial for cell survival. In Dictyostelium, STATc is a key regulator of the transcriptional response to hyperosmotic stress. Its phosphorylation and consequent activation is controlled by two signaling branches, one cGMP- and the other Ca(2+)-dependent, of which many signaling components have yet to be identified. The STATc stress signalling pathway feeds back on itself by upregulating the expression of STATc and STATc-regulated genes. Based on microarray studies we chose two tyrosine-kinase like proteins, Pyk3 and Phg2, as possible modulators of STATc phosphorylation and generated single and double knock-out mutants to them. Transcriptional regulation of STATc and STATc dependent genes was disturbed in pyk3(-), phg2(-), and pyk3(-)/phg2(-) cells. The absence of Pyk3 and/or Phg2 resulted in diminished or completely abolished increased transcription of STATc dependent genes in response to sorbitol, 8-Br-cGMP and the Ca(2+) liberator BHQ. Also, phospho-STATc levels were significantly reduced in pyk3(-) and phg2(-) cells and even further decreased in pyk3(-)/phg2(-) cells. The reduced phosphorylation was mirrored by a significant delay in nuclear translocation of GFP-STATc. The protein tyrosine phosphatase 3 (PTP3), which dephosphorylates and inhibits STATc, is inhibited by stress-induced phosphorylation on S448 and S747. Use of phosphoserine specific antibodies showed that Phg2 but not Pyk3 is involved in the phosphorylation of PTP3 on S747. In pull-down assays Phg2 and PTP3 interact directly, suggesting that Phg2 phosphorylates PTP3 on S747 in vivo. Phosphorylation of S448 was unchanged in phg2(-) cells. We show that Phg2 and an, as yet unknown, S448 protein kinase are responsible for PTP3 phosphorylation and hence its inhibition, and that Pyk3 is involved in the regulation of STATc by either directly or indirectly activating it. Our results add further complexities to the regulation of STATc, which presumably ensure its optimal activation in response to different environmental cues

    Signatures of natural selection between life cycle stages separated by metamorphosis in European eel

    Get PDF
    Received: 16 December 2014, Accepted: 6 July 2015, Published: 13 August 2015[Background] Species showing complex life cycles provide excellent opportunities to study the genetic associations between life cycle stages, as selective pressures may differ before and after metamorphosis. The European eel presents a complex life cycle with two metamorphoses, a first metamorphosis from larvae into glass eels (juvenile stage) and a second metamorphosis into silver eels (adult stage). We tested the hypothesis that different genes and gene pathways will be under selection at different life stages when comparing the genetic associations between glass eels and silver eels.[Results] We used two sets of markers to test for selection: first, we genotyped individuals using a panel of 80 coding-gene single nucleotide polymorphisms (SNPs) developed in American eel; second, we investigated selection at the genome level using a total of 153,423 RAD-sequencing generated SNPs widely distributed across the genome. Using the RAD approach, outlier tests identified a total of 2413 (1.57 %) potentially selected SNPs. Functional annotation analysis identified signal transduction pathways as the most over-represented group of genes, including MAPK/Erk signalling, calcium signalling and GnRH (gonadotropin-releasing hormone) signalling. Many of the over-represented pathways were related to growth, while others could result from the different conditions that eels inhabit during their life cycle.[Conclusions] The observation of different genes and gene pathways under selection when comparing glass eels vs. silver eels supports the adaptive decoupling hypothesis for the benefits of metamorphosis. Partitioning the life cycle into discrete morphological phases may be overall beneficial since it allows the different life stages to respond independently to their unique selection pressures. This might translate into a more effective use of food and niche resources and/or performance of phase-specific tasks (e.g. feeding in the case of glass eels, migrating and reproducing in the case of silver eels).We acknowledge funding from the Danish Council for Independent Reasearch, Natural Sciences (grant 09-072120 to MMH).Peer reviewe

    Fluoroquinolones and isoniazid-resistant tuberculosis: implications for the 2018 WHO guidance.

    Get PDF
    INTRODUCTION: 2018 World Health Organization (WHO) guidelines for the treatment of isoniazid (H)-resistant (Hr) tuberculosis recommend a four-drug regimen: rifampicin (R), ethambutol (E), pyrazinamide (Z) and levofloxacin (Lfx), with or without H ([H]RZE-Lfx). This is used once Hr is known, such that patients complete 6 months of Lfx (≥6[H]RZE-6Lfx). This cohort study assessed the impact of fluoroquinolones (Fq) on treatment effectiveness, accounting for Hr mutations and degree of phenotypic resistance. METHODS: This was a retrospective cohort study of 626 Hr tuberculosis patients notified in London, 2009-2013. Regimens were described and logistic regression undertaken of the association between regimen and negative regimen-specific outcomes (broadly, death due to tuberculosis, treatment failure or disease recurrence). RESULTS: Of 594 individuals with regimen information, 330 (55.6%) were treated with (H)RfZE (Rf=rifamycins) and 211 (35.5%) with (H)RfZE-Fq. The median overall treatment period was 11.9 months and median Z duration 2.1 months. In a univariable logistic regression model comparing (H)RfZE with and without Fqs, there was no difference in the odds of a negative regimen-specific outcome (baseline (H)RfZE, cluster-specific odds ratio 1.05 (95% CI 0.60-1.82), p=0.87; cluster NHS trust). Results varied minimally in a multivariable model. This odds ratio dropped (0.57, 95% CI 0.14-2.28) when Hr genotype was included, but this analysis lacked power (p=0.42). CONCLUSIONS: In a high-income setting, we found a 12-month (H)RfZE regimen with a short Z duration to be similarly effective for Hr tuberculosis with or without a Fq. This regimen may result in fewer adverse events than the WHO recommendations
    corecore