47 research outputs found

    Forwarding Tables Verification through Representative Header Sets

    Get PDF
    Forwarding table verification consists in checking the distributed data-structure resulting from the forwarding tables of a network. A classical concern is the detection of loops. We study this problem in the context of software-defined networking (SDN) where forwarding rules can be arbitrary bitmasks (generalizing prefix matching) and where tables are updated by a centralized controller. Basic verification problems such as loop detection are NP-hard and most previous work solves them with heuristics or SAT solvers. We follow a different approach based on computing a representation of the header classes, i.e. the sets of headers that match the same rules. This representation consists in a collection of representative header sets, at least one for each class, and can be computed centrally in time which is polynomial in the number of classes. Classical verification tasks can then be trivially solved by checking each representative header set. In general, the number of header classes can increase exponentially with header length, but it remains polynomial in the number of rules in the practical case where rules are constituted with predefined fields where exact, prefix matching or range matching is applied in each field (e.g., IP/MAC addresses, TCP/UDP ports). We propose general techniques that work in polynomial time as long as the number of classes of headers is polynomial and that do not make specific assumptions about the structure of the sets associated to rules. The efficiency of our method rely on the fact that the data-structure representing rules allows efficient computation of intersection, cardinal and inclusion. Finally, we propose an algorithm to maintain such representation in presence of updates (i.e., rule insert/update/removal). We also provide a local distributed algorithm for checking the absence of black-holes and a proof labeling scheme for locally checking the absence of loops

    Deux défis des Réseaux Logiciels : Relayage par le Nom et Vérification des Tables

    Get PDF
    The Internet changed the lives of network users: not only it affects users' habits, but it is also increasingly being shaped by network users' behavior.Several new services have been introduced during the past decades (i.e. file sharing, video streaming, cloud computing) to meet users' expectation.As a consequence, although the Internet infrastructure provides a good best-effort service to exchange information in a point-to-point fashion, this is not the principal need that todays users request. Current networks necessitate some major architectural changes in order to follow the upcoming requirements, but the experience of the past decades shows that bringing new features to the existing infrastructure may be slow.In this thesis work, we identify two main aspects of the Internet evolution: a “behavioral” aspect, which refers to a change occurred in the way users interact with the network, and a “structural” aspect, related to the evolution problem from an architectural point of view.The behavioral perspective states that there is a mismatch between the usage of the network and the actual functions it provides. While network devices implement the simple primitives of sending and receiving generic packets, users are really interested in different primitives, such as retrieving or consuming content. The structural perspective suggests that the problem of the slow evolution of the Internet infrastructure lies in its architectural design, that has been shown to be hardly upgradeable.On the one hand, to encounter the new network usage, the research community proposed the Named-data networking paradigm (NDN), which brings the content-based functionalities to network devices.On the other hand Software-defined networking (SDN) can be adopted to simplify the architectural evolution and shorten the upgrade-time thanks to its centralized software control plane, at the cost of a higher network complexity that can easily introduce some bugs. SDN verification is a novel research direction aiming to check the consistency and safety of network configurations by providing formal or empirical validation.The talk consists of two parts. In the first part, we focus on the behavioral aspect by presenting the design and evaluation of “Caesar”, a content router that advances the state-of-the-art by implementing content-based functionalities which may coexist with real network environments.In the second part, we target network misconfiguration diagnosis, and we present a framework for the analysis of the network topology and forwarding tables, which can be used to detect the presence of a loop at real-time and in real network environments.Cette thĂšse aborde des problĂšmes liĂ©s Ă  deux aspects majeurs de l’évolution d’Internet : l’aspect >, qui correspond aux nouvelles interactions entre les utilisateurs et le rĂ©seau, et l’aspect >, liĂ© aux changements d’Internet d’un point de vue architectural.Le manuscrit est composĂ© d’un chapitre introductif qui donne les grandes lignes de recherche de ce travail de thĂšse, suivi d’un chapitre consacrĂ© Ă  la description de l’état de l’art sur les deux aspects mentionnĂ©s ci-dessus. Parmi les solutions proposĂ©es par la communautĂ© scientifique pour s'adapter Ă  l’évolution d’Internet, deux nouveaux paradigmes rĂ©seaux sont particuliĂšrement dĂ©crits : Information- Centric Networking (ICN) et Software-Defined Networking (SDN).La thĂšse continue avec la proposition de >, un dispositif rĂ©seau, inspirĂ© par ICN, capable de gĂ©rer la distribution de contenus Ă  partir de primitives de routage basĂ©es sur le nom des donnĂ©es et non les adresses des serveurs. Caesar est prĂ©sentĂ© dans deux chapitres, qui dĂ©crivent l’architecture et deux des principaux modules : le relayage et la gestion de la traçabilitĂ© des requĂȘtes.La suite du manuscrit dĂ©crit un outil mathĂ©matique pour la dĂ©tection efficace de boucles dans un rĂ©seau SDN d’un point de vue thĂ©orique. Les amĂ©liorations de l’algorithme proposĂ© par rapport Ă  l’état de l’art sont discutĂ©es.La thĂšse se conclue par un rĂ©sumĂ© des principaux rĂ©sultats obtenus et une prĂ©sentation des travaux en cours et futurs

    Inference of virtual network functions' state via analysis of the CPU behavior

    Get PDF
    The on-going process of softwarization of IT networks promises to reduce the operational and management costs of network infrastructures by replacing hardware middleboxes with equivalent pieces of code executed on general-purpose servers. Alongside the benefits from the operator’s perspective, new strategies to provide the network’s resources to users are arising. Following the principle of “everything as a service”, multiple tenants can access the required resources – typically CPUs, NICs, or RAM – according to a Service-Level Agreement. However, tenants’ applications may require a complex and expensive measurement infrastructure to continuously monitor the network function’s state. Although the application’s specific behavior is unknown (and often opaque to the infrastructure owner), the software nature of (virtual) network functions (VNFs) may be the key to infer the behavior of the high-level functions by accessing low-level information, which is still under the control of the operating system and therefore of the infrastructure owner. As such, in the scenario of software VNFs executed on COTS servers, the underlying CPU’s behavior can be used as the sole predictor for the high-level VNF state without explicit in-network measurements: in this paper, we develop a novel methodology to infer high-level characteristics such as throughput or packet loss using CPU data instead of network measurements. Our methodology consists of (i) experimentally analyzing the behavior of a CPU that executes a VNF under different loads, (ii) extracting a correlation between the CPU footprint and the highlevel application state, and (iii) use this knowledge to detect the previously mentioned network metrics. Our code and datasets are publicly available

    Performance Benchmarking of State-of-the-Art Software Switches for NFV

    Full text link
    With the ultimate goal of replacing proprietary hardware appliances with Virtual Network Functions (VNFs) implemented in software, Network Function Virtualization (NFV) has been gaining popularity in the past few years. Software switches route traffic between VNFs and physical Network Interface Cards (NICs). It is of paramount importance to compare the performance of different switch designs and architectures. In this paper, we propose a methodology to compare fairly and comprehensively the performance of software switches. We first explore the design spaces of seven state-of-the-art software switches and then compare their performance under four representative test scenarios. Each scenario corresponds to a specific case of routing NFV traffic between NICs and/or VNFs. In our experiments, we evaluate the throughput and latency between VNFs in two of the most popular virtualization environments, namely virtual machines (VMs) and containers. Our experimental results show that no single software switch prevails in all scenarios. It is, therefore, crucial to choose the most suitable solution for the given use case. At the same time, the presented results and analysis provide a deeper insight into the design tradeoffs and identifies potential performance bottlenecks that could inspire new designs.Comment: 17 page

    NFV Platforms: Taxonomy, Design Choices and Future Challenges

    Get PDF
    Due to the intrinsically inefficient service provisioning in traditional networks, Network Function Virtualization (NFV) keeps gaining attention from both industry and academia. By replacing the purpose-built, expensive, proprietary network equipment with software network functions consolidated on commodity hardware, NFV envisions a shift towards a more agile and open service provisioning paradigm. During the last few years, a large number of NFV platforms have been implemented in production environments that typically face critical challenges, including the development, deployment, and management of Virtual Network Functions (VNFs). Nonetheless, just like any complex system, such platforms commonly consist of abounding software and hardware components and usually incorporate disparate design choices based on distinct motivations or use cases. This broad collection of convoluted alternatives makes it extremely arduous for network operators to make proper choices. Although numerous efforts have been devoted to investigating different aspects of NFV, none of them specifically focused on NFV platforms or attempted to explore their design space. In this paper, we present a comprehensive survey on the NFV platform design. Our study solely targets existing NFV platform implementations. We begin with a top-down architectural view of the standard reference NFV platform and present our taxonomy of existing NFV platforms based on what features they provide in terms of a typical network function life cycle. Then we thoroughly explore the design space and elaborate on the implementation choices each platform opts for. We also envision future challenges for NFV platform design in the incoming 5G era. We believe that our study gives a detailed guideline for network operators or service providers to choose the most appropriate NFV platform based on their respective requirements. Our work also provides guidelines for implementing new NFV platforms

    On the Learnability of Software Router Performance via CPU Measurements

    Get PDF
    In the last decade the ICT community observed a growing popularity of software networking paradigms. This trend consists in moving network applications from static, expensive, hardware equipment (e.g. router, switches, firewalls) towards flexible, cheap pieces of software that are executed on a commodity server. In this context, a server owner may provide the server resources (CPUs, NICs, RAM) for customers, following a Service-Level Agreement (SLA) about clients' requirements. The problem of resource allocation is typically solved by overprovisioning, as the clients' application is opaque to the server owner, and the resource required by clients' applications are often unclear or very difficult to quantify. This paper shows a novel approach that exploits machine learning techniques in order to infer the input traffic load (i.e., the expected network traffic condition) by solely looking at the runtime CPU footprint

    Efficient Loop Detection in Forwarding Networks and Representing Atoms in a Field of Sets

    Get PDF
    The problem of detecting loops in a forwarding network is known to be NP-complete when general rules such as wildcard expressions are used. Yet, network analyzer tools such as Netplumber (Kazemian et al., NSDI'13) or Veriflow (Khurshid et al., NSDI'13) efficiently solve this problem in networks with thousands of forwarding rules. In this paper, we complement such experimental validation of practical heuristics with the first provably efficient algorithm in the context of general rules. Our main tool is a canonical representation of the atoms (i.e. the minimal non-empty sets) of the field of sets generated by a collection of sets. This tool is particularly suited when the intersection of two sets can be efficiently computed and represented. In the case of forwarding networks, each forwarding rule is associated with the set of packet headers it matches. The atoms then correspond to classes of headers with same behavior in the network. We propose an algorithm for atom computation and provide the first polynomial time algorithm for loop detection in terms of number of classes (which can be exponential in general). This contrasts with previous methods that can be exponential, even in simple cases with linear number of classes. Second, we introduce a notion of network dimension captured by the overlapping degree of forwarding rules. The values of this measure appear to be very low in practice and constant overlapping degree ensures polynomial number of header classes. Forwarding loop detection is thus polynomial in forwarding networks with constant overlapping degree

    Performance comparison between the Click Modular Router and the NetFPGA

    Get PDF
    It is possible to forward minimum-sized packets at rates of hundreds of Mbps using commodity hardware and Linux. We had a preference for the Click Modular Router platform due its flexibility and the fact that it claimed to have equal or higher performance than native forwarding if used with its polling drivers. Moreover, the NetFPGA is an open networking platform accelerator that enables researchers and instructors to build working prototypes of high-speed, hardware-accelerated networking systems. NetFPGA reference designs comprised in the system include an IPv4 router, an Ethernet switch, a four-port NIC, and SCONE (Software Component of NetFPGA). Researchers have used the platform to build advanced network flow processing systems. We have followed the RFC1242 - Benchmarking Terminology for Network Interconnection Devices - and the RFC2544 - Benchmarking Methodology for Network Interconnection Devices - in order to define the specific set of tests to use to describe the performance characteristics of the two routers. We have also shown a test comparison between the NetFPGA and the Click router about a file transfer using the FTP and the HTTP protocol.Overall, the NetFPGA router performance outperforms the Click router performance

    FloWatcher-DPDK: lightweight line-rate flow-level monitoring in software

    Get PDF
    In the last few years, several software-based solutions have been proved to be very efficient for high-speed packet processing, traffic generation and monitoring, and can be considered valid alternatives to expensive and non-flexible hardware-based solutions. In our work, we first benchmark heterogeneous design choices for software-based packet monitoring systems in terms of achievable performance and required resources (i.e., the number of CPU cores). Building on this extensive analysis we design FloWatcher-DPDK, a DPDK-based high-speed software traffic monitor we provide to the community as an open source project. In a nutshell, FloWatcher-DPDK provides tunable fine-grained statistics at packet and flow levels. Experimental results demonstrate that FloWatcher-DPDK sustains per-flow statistics with 5-nines precision at high-speed (e.g., 14.88 Mpps) using a limited amount of resources. Finally, we showcase the usage of FloWatcher-DPDK by configuring it to analyze the performance of two open source prototypes for stateful flow-level end-host and in-network packet processing
    corecore