75 research outputs found

    Improved secretory expression and characterization of thermostable xylanase and β-xylosidase from Pseudothermotoga thermarum and their application in synergistic degradation of lignocellulose

    Get PDF
    Xylanase and β-xylosidase are the key enzymes for hemicellulose hydrolysis. To further improve hydrolysis efficacy, high temperature hydrolysis with thermostable hemicellulases showed promise. In this study, thermostable xylanase (Xyn) and β-xylosidase (XynB) genes from Pseudothermotoga thermarum were cloned and secretory expressed in Bacillu subtilis. Compared with Escherichia coli expression host, B. subtilis resulted in a 1.5 time increase of enzymatic activity for both recombinant enzymes. The optimal temperature and pH were 95°C and 6.5 for Xyn, and 95°C and 6.0 for XynB. Thermostability of both recombinant enzymes was observed between the temperature range of 75–85°C. Molecular docking analysis through AutoDock showed the involvement of Glu525, Asn526, Trp774 and Arg784 in Xyn-ligand interaction, and Val237, Lys238, Val761 and Asn76 in XynB-ligand interaction, respectively. The recombinant Xyn and XynB exhibited synergistic hydrolysis of beechwood xylan and pretreated lignocellulose, where Xyn and XynB pre-hydrolysis achieved a better improvement of pretreated lignocellulose hydrolysis by commercial cellulase. The observed stability of the enzymes at high temperature and the synergistic effect on lignocellulosic substrates suggested possible application of these enzymes in the field of saccharification process

    Impact of water sediment diversion and afflux on erosion deposition in the Luoshan Hankou reach, 1 middle Yangtze River, China

    Get PDF
    It is not yet fully understood how water-sediment diversion and afflux along a mainstream reach of a river affect erosion-deposition in downstream reaches. This study focuses on the Luoshan-Hankou mainstream reach of the middle Yangtze River, China. The Luoshan-Hankou reach is vitally important for flood control, being located downstream of three diversion mouths and an afflux outlet along the Jingjiang reach. We establish empirical formulae for sediment transport rates at boundary cross-sections, and hence estimate the amount and proportion of erosion-deposition and its relative increase (termed erosion-deposition promotion) in the Luoshan-Hankou reach. We then propose critical net water supplies from Dongting Lake to Luoshan-Hankou reach based on maxima and equilibria of erosion-deposition and its promotion. It is found that net water supply partly drives erosion-deposition in the Luoshan-Hankou reach where maximal proportions of deposition and deposition-promotion may be approximated by 0.01c-37.67 and 0.01c-37.67 + c-1, in which c is a dimensionless parameter representing the erosion-deposition condition in Luoshan-Hankou reach for no water-sediment exchange. At Zhicheng hydrological station, the critical ratio of net water supply to overall water discharge is 0.418c-33.33-1, and critical net water supply ratios for equilibria of erosion-deposition and its promotion are −1 (or c-33.33-1) and 0 (or (0.06 + 3.257c54.61)-1-1). A chart based on net water supply and c is devised representing four types of erosion–deposition and its promotion for the Luoshan-Hankou reach. Historical data over the past 65 years demonstrate that erosion-deposition and its promotion in the reach are respectively governed by c and net water supply; there is a remarkable shift from alternate erosion-deposition to monotonic erosion whilst the erosion-deposition effect remains consistent. The foregoing are in agreement with observed data, and comparable with data for the Jingjiang reach (affected by the three water-sediment diversion mouths). Satisfactory flood-control conditions in the convergence zone between the Yangtze mainstream and Dongting Lake accompanied by increasing erosion in the Luoshan-Hankou reach are predicted for the future

    Interleukin (IL)-1 promotes allogeneic T cell intimal infiltration and IL-17 production in a model of human artery rejection

    Get PDF
    Interleukin (IL) 1α produced by human endothelial cells (ECs), in response to tumor necrosis factor (TNF) or to co-culture with allogeneic T cells in a TNF-dependent manner, can augment the release of cytokines from alloreactive memory T cells in vitro. In a human–mouse chimeric model of artery allograft rejection, ECs lining the transplanted human arteries express IL-1α, and blocking IL-1 reduces the extent of human T cell infiltration into the artery intima and selectively inhibits IL-17 production by infiltrating T cells. In human skin grafts implanted on immunodeficient mice, administration of IL-17 is sufficient to induce mild inflammation. In cultured cells, IL-17 acts preferentially on vascular smooth muscle cells rather than ECs to enhance production of proinflammatory mediators, including IL-6, CXCL8, and CCL20. Neutralization of IL-17 does not reduce T cell infiltration into allogeneic human artery grafts, but markedly reduces IL-6, CXCL8, and CCL20 expression and selectively inhibits CCR6+ T cell accumulation in rejecting arteries. We conclude that graft-derived IL-1 can promote T cell intimal recruitment and IL-17 production during human artery allograft rejection, and suggest that targeting IL-1 in the perioperative transplant period may modulate host alloreactivity

    MyD88-dependent, superoxide-initiated inflammation is necessary for flow-mediated inward remodeling of conduit arteries

    Get PDF
    Vascular remodeling normalizes abnormal hemodynamic stresses through structural changes affecting vessel size and wall thickness. We investigated the role of inflammation in flow-mediated vascular remodeling using a murine model of partial outflow reduction without flow cessation or neointima formation. Common carotid arteries decreased in size after ipsilateral external carotid artery ligation in wild-type mice, but not in myeloid differentiation protein-88 (MyD88)–deficient mice. Inward remodeling was associated with MyD88-dependent and superoxide-initiated cytokine and chemokine production, as well as transient adventitial macrophage accumulation and activation. Macrophage depletion prevented flow-mediated inward vascular remodeling. Expression of MyD88 by intrinsic vascular cells was necessary for cytokine and chemokine production and changes in vessel size, whereas MyD88 expression by bone marrow–derived cells was obligatory for changes in vessel size. We conclude that there are at least two distinct roles for MyD88 in flow-mediated inward remodeling of conduit arteries. Our findings suggest that inflammation is necessary for vascular adaptation to changes in hemodynamic forces

    CXCR3-dependent accumulation and activation of perivascular macrophages is necessary for homeostatic arterial remodeling to hemodynamic stresses

    Get PDF
    Sustained changes in blood flow modulate the size of conduit arteries through structural alterations of the vessel wall that are dependent on the transient accumulation and activation of perivascular macrophages. The leukocytic infiltrate appears to be confined to the adventitia, is responsible for medial remodeling, and resolves once hemodynamic stresses have normalized without obvious intimal changes. We report that inward remodeling of the mouse common carotid artery after ligation of the ipsilateral external carotid artery is dependent on the chemokine receptor CXCR3. Wild-type myeloid cells restored flow-mediated vascular remodeling in CXCR3-deficient recipients, adventitia-infiltrating macrophages of Gr1low resident phenotype expressed CXCR3, the perivascular accumulation of macrophages was dependent on CXCR3 signaling, and the CXCR3 ligand IP-10 was sufficient to recruit monocytes to the adventitia. CXCR3 also contributed to selective features of macrophage activation required for extracellular matrix turnover, such as production of the transglutaminase factor XIII A subunit. Human adventitial macrophages displaying a CD14+/CD16+ resident phenotype, but not circulating monocytes, expressed CXCR3, and such cells were more frequent at sites of disturbed flow. Our observations reveal a CXCR3-dependent accumulation and activation of perivascular macrophages as a necessary step in homeostatic arterial remodeling triggered by hemodynamic stress in mice and possibly in humans as well

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Mouse Models for Graft Arteriosclerosis

    No full text
    corecore