163 research outputs found

    Energy Poverty Impact on the Economics of Indonesia Using ARDL Approach

    Get PDF
    Energy poverty is a global threat to human development path. This study is about the cointegration relationship between energy poverty and the economy of Indonesia for the period of 1995 to 2014. Autoregressive Distributed Lag (ARDL) model and vector error correction model (VECM) were used in this study to study the cointegration and causality analysis. Unit root test and stability test were adopted to increase the reliability and accuracy of the model. The analysis shows that parity purchase power (PPP) has a positive relationship with inflation (INF) in both long-run and short-run. Result shows in long-run, the increment of 1% for both energy consumption (EC) and PPP will result -1.12% and 0.032% effect respectively towards inflation in Indonesia. While for 1% increase in energy consumption is expected to give 1.5297% increment on inflation in short-run cases. Granger causality test shows only unidirectional causality between parity purchase power and inflation in both the long-run and short-run. Energy consumption only shows unidirectional causality toward inflation in the long-run. Overall mean increase of PPP or EC has a single direction influence on the inflation rate. The study can aid policy planning in eradication energy poverty

    An overview of out-of-step protection in power systems

    Get PDF
    Power system is subjected to an extensive variety of little or bigger disturbance to the system during the operation. The power system that designed as one of the main requirement is to survive from the larger type of disturbances like faults. The power swing in certain system is the variation in three phase power flow in the power system. This paper mainly discussed the power swing and distance relay and the effect of the power swing on the distance relay and demonstrate about the basic power system stability and power swing phenomena. Moreover, out of step protection and detection applications are revised as well. At the end, the paper also demonstrated the past study of out of step application of TNB 275 KV network

    Harmonic Reduction of a Single-Phase Multilevel Inverter Using Genetic Algorithm and Particle Swarm Optimization

    Get PDF
    Power inverter play an important role in power system especially with its capability on reducing system size and increase efficiently. The recent research trends of power electronic system are focusing on multilevel inverter topics in optimization on voltage output, reducing the total harmonics distortion, modulation technique, and switching configuration. The research emphasizes the optimization with a fundamental switching frequency method that is the optimized harmonic stepped waveform (OHSW) modulation method. The selective harmonic elimination (SHE) calculation has adapted with genetic algorithm (GA) and particle swarm optimization (PSO) in order to speed up the calculation. Both bioinspired algorithms are compared in terms of total harmonic distortion (THD) and selective harmonic elimination for both equal and unequal sources. The overall result showed that both algorithms have high accuracy in solving the nonlinear equation. However, the genetic algorithm showed better output quality in terms of selective harmonic elimination which overall no exceeding 0.4%. Particle swarm optimization shows strength in finding the best total harmonic distortion where in seven-level cascaded H-bridge multilevel inverter (m=0.8) shows 6.8% only as compared to genetic algorithm. Simulation for three-level, five-level, and seven-level for each multilevel inverter at different circumferences had been done in this research. The result draws out a conclusion where the possibility of having a filterless high-efficient inverter can be achieved

    A review on equipment protection and system protection relay in power system

    Get PDF
    Power system equipment is configured and connected together with multiple voltage levels in existing electrical power system. There are varieties of electrical equipment obtainable in the power system predominantly from generation side up to the distribution side. Consequently, appropriate protections must be apt to prevent inessential disturbances that lead to voltage instability, voltage collapse and sooner a total blackout took place in the power system. The understanding of each component on the system protection is critical. This is due to any abnormal condition and failure can be analyzed and solved effectively due to the rapid changing and development on the power system network. Therefore, the enhancement of power quality can be achieved by sheltering the equipment with protection relay in power system. Moreover, the design of a systematic network is crucial for the system protection itself. Several types of protective equipment and protection techniques are taken into consideration in this paper. Hence, the existing accessible types and methods of system protection in the power system network are reviewed

    The structure of the bacterial DNA segregation ATPase filament reveals the conformational plasticity of ParA upon DNA binding

    Get PDF
    The efficient segregation of replicated genetic material is an essential step for cell division. Bacterial cells use several evolutionarily-distinct genome segregation systems, the most common of which is the type I Par system. It consists of an adapter protein, ParB, that binds to the DNA cargo via interaction with the parS DNA sequence; and an ATPase, ParA, that binds nonspecific DNA and mediates cargo transport. However, the molecular details of how this system functions are not well understood. Here, we report the cryo-EM structure of the Vibrio cholerae ParA2 filament bound to DNA, as well as the crystal structures of this protein in various nucleotide states. These structures show that ParA forms a left-handed filament on DNA, stabilized by nucleotide binding, and that ParA undergoes profound structural rearrangements upon DNA binding and filament assembly. Collectively, our data suggest the structural basis for ParA’s cooperative binding to DNA and the formation of high ParA density regions on the nucleoid
    corecore