1,281 research outputs found

    Gravitational Waves and Proton Decay: Complementary Windows into Grand Unified Theories

    Get PDF
    Proton decay is a smoking gun signature of grand unified theories (GUTs). Searches by Super-Kamiokande have resulted in stringent limits on the GUT symmetry-breaking scale. The large-scale multipurpose neutrino experiments DUNE, Hyper-Kamiokande, and JUNO will either discover proton decay or further push the symmetry-breaking scale above 1016 GeV. Another possible observational consequence of GUTs is the formation of a cosmic string network produced during the breaking of the GUT to the standard model gauge group. The evolution of such a string network in the expanding Universe produces a stochastic background of gravitational waves which will be tested by a number of gravitational wave detectors over a wide frequency range. We demonstrate the nontrivial complementarity between the observation of proton decay and gravitational waves produced from cosmic strings in determining SO(10) GUT-breaking chains. We show that such observations could exclude SO(10) breaking via flipped SU(5) × U(1) or standard SU(5), while breaking via a Pati-Salam intermediate symmetry, or standard SU(5) × U(1), may be favored if a large separation of energy scales associated with proton decay and cosmic strings is indicated. We note that recent results by the NANOGrav experiment have been interpreted as evidence for cosmic strings at a scale of ∼ 10 14 GeV. This would strongly point toward the existence of GUTs, with SO(10) being the prime candidate. We show that the combination with already available constraints from proton decay allows us to identify preferred symmetry-breaking routes to the standard model

    Confronting SO(10) GUTs with proton decay and gravitational waves

    Get PDF
    Grand Unified Theories (GUT) predict proton decay as well as the formation of cosmic strings which can generate gravitational waves. We determine which non-supersymmetric SO(10) breaking chains provide gauge unification in addition to a gravitational signal from cosmic strings. We calculate the GUT and intermediate scales for these SO(10) breaking chains by solving the renormalisation group equations at the two-loop level. This analysis predicts the GUT scale, hence the proton lifetime, in addition to the scale of cosmic string generation and thus the associated gravitational wave signal. We determine which SO(10) breaking chains survive in the event of the null results of the next generation of gravitational waves and proton decay searches and determine the correlations between proton decay and gravitational waves scales if these observables are measured

    A predictive and testable unified theory of fermion masses, mixing and leptogenesis

    Get PDF
    We consider a minimal non-supersymmetric SO(10) Grand Unified Theory (GUT) model that can reproduce the observed fermionic masses and mixing parameters of the Standard Model. We calculate the scales of spontaneous symmetry breaking from the GUT to the Standard Model gauge group using two-loop renormalisation group equations. This procedure determines the proton decay rate and the scale of U(1)B−L breaking, which generates cosmic strings and the right-handed neutrino mass scales. Consequently, the regions of parameter space where thermal leptogenesis is viable are identified and correlated with the fermion masses and mixing, the neutrinoless double beta decay rate, the proton decay rate, and the gravitational wave signal resulting from the network of cosmic strings. We demonstrate that this framework, which can explain the Standard Model fermion masses and mixing and the observed baryon asymmetry, will be highly constrained by the next generation of gravitational wave detectors and neutrino oscillation experiments which will also constrain the proton lifetime

    The reported durations of GOES Soft X-Ray flares in different solar cycles

    Get PDF
    The Geostationary Orbital Environmental Satellites (GOES) Soft X-ray (SXR) sensors have provided data relating to, inter alia, the time, intensity and duration of solar flares since the 1970s. The GOES SXR Flare List has become the standard reference catalogue for solar flares and is widely used in solar physics research and space weather. We report here that in the cur- rent version of the list there are significant differences between the mean du- ration of flares which occurred before May 1997 and the mean duration of flares thereafter. Our analysis shows that the reported flare timings for the pre-May 1997 data were not based on the same criteria as is currently the case. This finding has serious implications for all those who used flare duration (or fluence, which depends on the chosen start and end times) as part of their analysis of pre-May 1997 solar events, or statistical analyses of large sam- ples of flares, e.g. as part of the assessment of a Solar Energetic Particle fore- casting algorithm

    Indication of critical scaling in time during the relaxation of an open quantum system

    Full text link
    Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields. Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found. Recently, dynamical quantum phase transitions and universal scaling have been predicted and also observed in the non-equilibrium dynamics of isolated quantum systems after a quench, with time playing the role of the control parameter. However, signatures of such critical phenomena in time in open systems, whose dynamics is driven by the dissipative contact to an environment, were so far elusive. Here, we present results indicating that critical scaling with respect to time can also occur during the relaxation dynamics of an open quantum system described by mixed states. We experimentally measure the relaxation dynamics of the large atomic spin of individual Caesium atoms induced by the dissipative coupling via spin-exchange processes to an ultracold Bose gas of Rubidium atoms. For initial states far from equilibrium, the entropy of the spin state is found to peak in time, transiently approaching its maximum possible value, before eventually relaxing to its lower equilibrium value. Moreover, a finite-size scaling analysis based on numerical simulations shows that it corresponds to a critical point with respect to time of the dissipative system in the limit of large system sizes. It is signalled by the divergence of a characteristic length at a critical time, characterized by critical exponents that are found to be independent of system details
    corecore