24,142 research outputs found

    Gamma-Ray Spectral Characteristics of Thermal and Non-Thermal Emission from Three Black Holes

    Full text link
    Cygnus X-1 and the gamma-ray transients GROJ0422+32 and GROJ1719-24 displayed similar spectral properties when they underwent transitions between the high and low gamma-ray (30 keV to few MeV) intensity states. When these sources were in the high gamma-ray intensity state (gamma-2, for Cygnus X-1), their spectra featured two components: a Comptonized shape below 200-300 keV with a soft power-law tail (photon index >3) that extended to ~1 MeV or beyond. When the sources were in the low-intensity state (gamma-0, for Cygnus X-1), the Comptonized spectral shape below 200 keV typically vanished and the entire spectrum from 30 keV to ~1 MeV can be characterized by a single power law with a relatively harder photon index ~2-2.7. Consequently the high- and low-intensity gamma-ray spectra intersect, generally in the ~400 keV - 1 MeV range, in contrast to the spectral pivoting seen previously at lower (~10 keV) energies. The presence of the power-law component in both the high- and low-intensity gamma-ray spectra strongly suggests that the non-thermal process is likely to be at work in both the high and the low-intensity situations. We have suggested a possible scenario (Ling & Wheaton, 2003), by combining the ADAF model of Esin et al. (1998) with a separate jet region that produces the non-thermal gamma-ray emission, and which explains the state transitions. Such a scenario will be discussed in the context of the observational evidence, summarized above, from the database produced by EBOP, JPL's BATSE earth occultation analysis system.Comment: 6 pages, 3 figures, accepted for publication in Proceedings of 2004 Microquasar Conference, Beijing, China, Chinese Journal of Astronomy and Astrophysics, minor corrections per refere

    P-wave diffusion in fluid-saturated medium

    Get PDF
    This paper considers the propagating P-waves in the fluid-saturated mediums that are categorized to fall into two distinct groups: insoluble and soluble mediums. P-waves are introduced with slowness in accordance to Snell Law and are shown to relate to the medium displacement and wave diffusion. Consequently, the results bear out that the propagating P-waves in the soluble medium share similar diffusive characteristic as of insoluble medium. Nonetheless, our study on fluid density in the mediums show that high density fluid promotes diffusive characteristic whiles low density fluid endorses non-diffusive P-wav

    Fire extinguishant materials

    Get PDF
    Fire extinguishant composition comprising a mixture of a finely divided aluminum compound and alkali metal, stannous or plumbous halide is provided. Aluminum compound may be aluminum hydroxide, alumina or boehmite but preferably it is an alkali metal dawsonite. The metal halide may be an alkali metal, e.g. potassium iodide, bromide or chloride or stannous or plumbous iodide, bromide or chloride. Potassium iodide is preferred

    A least-squares implicit RBF-FD closest point method and applications to PDEs on moving surfaces

    Full text link
    The closest point method (Ruuth and Merriman, J. Comput. Phys. 227(3):1943-1961, [2008]) is an embedding method developed to solve a variety of partial differential equations (PDEs) on smooth surfaces, using a closest point representation of the surface and standard Cartesian grid methods in the embedding space. Recently, a closest point method with explicit time-stepping was proposed that uses finite differences derived from radial basis functions (RBF-FD). Here, we propose a least-squares implicit formulation of the closest point method to impose the constant-along-normal extension of the solution on the surface into the embedding space. Our proposed method is particularly flexible with respect to the choice of the computational grid in the embedding space. In particular, we may compute over a computational tube that contains problematic nodes. This fact enables us to combine the proposed method with the grid based particle method (Leung and Zhao, J. Comput. Phys. 228(8):2993-3024, [2009]) to obtain a numerical method for approximating PDEs on moving surfaces. We present a number of examples to illustrate the numerical convergence properties of our proposed method. Experiments for advection-diffusion equations and Cahn-Hilliard equations that are strongly coupled to the velocity of the surface are also presented

    BATSE Soft Gamma-Ray Observations of GROJ0422+32

    Full text link
    We report results of a comprehensive study of the soft gamma-ray (30 keV to 1.7 MeV) emission of GROJ0422+32 during its first known outburst in 1992. These results were derived from the BATSE earth-occultation database with the JPL data analysis package, EBOP (Enhanced BATSE Occultation Package). Results presented here focus primarily on the long-term temporal and spectral variability of the source emission associated with the outburst. The light curves with 1-day resolution in six broad energy-bands show the high-energy flux (>200 keV) led the low-energy flux (<200 keV) by ~5 days in reaching the primary peak, but lagged the latter by ~7 days in starting the declining phase. We confirm the "secondary maximum" of the low-energy (<200 keV) flux at TJD 8970-8981, ~120 days after the first maximum. Our data show that the "secondary maximum" was also prominent in the 200-300 keV band, but became less pronounced at higher energies. During this 200-day period, the spectrum evolved from a power-law with photon index of 1.75 on TJD 8839, to a shape that can be described by a Comptonized model or an exponential power law below 300 keV, with a variable power-law tail above 300 keV. The spectrum remained roughly in this two-component shape until ~9 November (TJD 8935) and then returned to the initial power-law shape with an index of ~2 until the end of the period. The correlation of the two spectral shapes with the high and low luminosities of the soft gamma-ray emission is strongly reminiscent of that seen in Cygnus X-1. We interpret these results in terms of the Advection Dominated Accretion Flow (ADAF) model with possibly a "jet-like" region that persistently produced the non-thermal power-law gamma rays observed throughout the event.Comment: 40 pages total, including 10 figures and 2 table

    Some aspects of analytical chemistry as applied to water quality assurance techniques for reclaimed water: The potential use of X-ray fluorescence spectrometry for automated on-line fast real-time simultaneous multi-component analysis of inorganic pollutants in reclaimed water

    Get PDF
    The potential use of isotopically excited energy dispersive X-ray fluorescence (XRF) spectrometry for automated on line fast real time (5 to 15 minutes) simultaneous multicomponent (up to 20) trace (1 to 10 parts per billion) analysis of inorganic pollutants in reclaimed water was examined. Three anionic elements (chromium 6, arsenic and selenium) were studied. The inherent lack of sensitivity of XRF spectrometry for these elements mandates use of a preconcentration technique and various methods were examined, including: several direct and indirect evaporation methods; ion exchange membranes; selective and nonselective precipitation; and complexation processes. It is shown tha XRF spectrometry itself is well suited for automated on line quality assurance, and can provide a nondestructive (and thus sample storage and repeat analysis capabilities) and particularly convenient analytical method. Further, the use of an isotopically excited energy dispersive unit (50 mCi Cd-109 source) coupled with a suitable preconcentration process can provide sufficient sensitivity to achieve the current mandated minimum levels of detection without the need for high power X-ray generating tubes

    Matrix elements of four-quark operators and \Delta L=2 hyperon decays

    Full text link
    The study of neutrinoless double beta decays of nuclei and hyperons require the calculation of hadronic matrix elements of local four-quark operators that change the total charge by two units \Delta Q=2 . Using a low energy effective Lagrangian that induces these transitions, we compute these hadronic matrix elements in the framework of the MIT bag model. As an illustrative example we evaluate the amplitude and transition rate of \Sigma- -> p e- e-, a decay process that violates lepton number by two units (\Delta L=2). The relevant matrix element is evaluated without assuming the usual factorization approximation of the four-quark operators and the results obtained in both approaches are compared.Comment: 13 pages, 2 .eps figure

    Galactic distribution of interstellar Al-26

    Get PDF
    A narrow cosmic gamma ray line at 1809 keV was discovered which was interpreted as resulting from the decay of approximately 3 M sub theta of Al-26 residing in the galactic disk. While its intrinsic width was unresolved by the HEAO 3 spectrometer, a (1 sigma) limit of 3 keV FWHM was obtained; this corresponds to bulk motions of v 250 km/s, which is consistent with material at rest in the ISM. Sites which have been suggested include type II supernovae and massive stars which are members of the extreme population I, as well as novae and red giants which are associated with an older disk population. The HEAO 3 data was used to distinguish between these two stellar populations
    corecore