821 research outputs found

    Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells

    Get PDF
    We report a model describing the molecular orientation disorder in CH3NH3PbI3, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab-initio molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular) domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current--voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.Comment: 10 pages; 4 figures, 2 SI figure

    Hexagonal ABCABC as semiconducting ferroelectrics

    Full text link
    We use a first-principles rational-design approach to identify a previously-unrecognized class of ferroelectric materials in the P63mcP63mc LiGaGe structure type. We calculate structural parameters, polarization and ferroelectric well depths both for reported and as-yet hypothetical representatives of this class. Our results provide guidance for the experimental realization and further investigation of high-performance materials suitable for practical applications.Comment: 5 pages, 2 figures, 3 table

    CaCu_3Ti_4O_12/CaTiO_3 Composite Dielectrics: A Ba/Pb-free Ceramics with High Dielectric Constants

    Full text link
    We have measured dielectric properties of Ca1+x_{1+x}Cu3−x_{3-x}Ti4_4O12_{12} (xx = 0, 0.1, 0.5, 1, 1.5, 2, 2.9 and 3), and have found that Ca2_2Cu2_2Ti4_4O12_{12} (a composite of CaCu3_3Ti4_4O12_{12} and CaTiO3_3) exhibits a high dielectric constant of 1800 with a low dissipation factor of 0.02 below 100 kHz from 220 to 300 K. These are comparable to (or even better than) those of the Pb/Ba-based ceramics, which could be attributed to a barrier layer of CaTiO3_3 on the surface of the CaCu3_3Ti4_4O12_{12} grains. The composite dielectric ceramics reported here are environmentally benign as they do not contain Ba/Pb.Comment: 4 pages, 4 figures, Appl. Phys. Lett. (scheduled on July 25, 2005

    Effect of ferroelectric layers on the magnetocapacitance properties of superlattices-based oxide multiferroics

    Full text link
    A series of superlattices composed of ferromagnetic La0.7_{0.7}Ca0.3_{0.3}MnO3_3 (LCMO) and ferroelectric/paraelectric Ba1−x_{1-x}Srx_xTiO3_3 (0≤\leq x≤\leq 1) were deposited on SrTiO3_3 substrates using the pulsed laser deposition. Films of epitaxial nature comprised of spherical mounds having uniform size are obtained. Magnetotransport properties of the films reveal a ferromagnetic Curie temperature in the range of 145-158 K and negative magnetoresistance as high as 30%, depending on the type of ferroelectric layers employed for their growth (\QTR{it}{i.e.} '\QTR{it}{x'} value). Ferroelectricity at temperatures ranging from 55 K to 105 K is also observed, depending on the barium content. More importantly, the multiferroic nature of the film is determined by the appearance of negative magnetocapacitance, which was found to be maximum around the ferroelectric transition temperature (3% per \QTR{it}{tesla}). These results are understood based on the role of the ferroelectric/paraelectric layers and strains in inducing the multiferroism.Comment: Accepted to Applied Physics Letter

    Coulomb interaction and ferroelectric instability of BaTiO3

    Full text link
    Using first-principles calculations, the phonon frequencies at the Γ\Gamma point and the dielectric tensor are determined and analysed for the cubic and rhombohedral phases of BaTiO3_{3}. The dipole-dipole interaction is then separated \`a la Cochran from the remaining short-range forces, in order to investigate their respective influence on lattice dynamics. This analysis highlights the delicate balance of forces leading to an unstable phonon in the cubic phase and demonstrates the extreme sensitivity of this close compensation to minute effective charge changes. Within our decomposition, the stabilization of the unstable mode in the rhombohedral phase or under isotropic pressure has a different origin.Comment: 9 pages, 4 tables, 1 figur

    Conduction of topologically-protected charged ferroelectric domain walls

    Full text link
    We report on the observation of nanoscale conduction at ferroelectric domain walls in hexagonal HoMnO3 protected by the topology of multiferroic vortices using in situ conductive atomic force microscopy, piezoresponse force microscopy, and kelvin-probe force microscopy at low temperatures. In addition to previously observed Schottky-like rectification at low bias [Phys. Rev. Lett., 104, 217601 (2010)], conductance spectra reveal that negatively charged tail-to-tail walls exhibit enhanced conduction at high forward bias, while positively charged head-to-head walls exhibit suppressed conduction at high reverse bias. Our results pave the way for understanding the semiconducting properties of the domains and domain walls in small-gap ferroelectrics.Comment: 8 pages, 4 figure

    Risk Management Alternatives

    Get PDF
    Exact date of working paper unknown

    Defects of the Crystal Structure and Jahn-Teller distortion in BiMnO3

    Full text link
    Using density-functional theory with the on-site Coulomb correction (the LDA+U method), we perform the structural optimization of BiMnO3 by starting from different experimentally reported structures. We confirm that irrespectively on the starting condition, all calculations converge to the same centrosymmetric structure, in agreement with the previous finding. Nevertheless, the structural optimization substantially reduces the Jahn-Teller (JT) distortion in the system. We attribute this fact to the strong competition of local distortions around the Mn- and Bi-sites: while the local Mn-environment experiences the JT instability, the one of the Bi-sites favours the off-centrosymmetric displacements, which involves the same oxygen atoms. The existence of the second mechanism explains the difference between BiMnO3 and more canonical JT manganites, such as LaMnO3. Finally, being motivated by experimental studies, we have investigated the formation of different types of defects and obtained that BiMnO3 (contrary to other considered systems, such as LaMnO3 and BiFeO3) can relatively easily form oxygen impurities at interstitial sites. The impurity oxygen atom tends to form a pair with the host oxygen, which explains the insulating character of the oxygen-excessive BiMnO3+x. Moreover, we found that the BiMnO3+x samples experience the "memory effect", where the optimized crystal structure strongly depends on the starting configuration. We suggest that such a memory effect may explain stability of some of the crystal structures of BiMnO3, which have been previously reported experimentally.Comment: 22 pages, 5 tables, 5 figure

    Room-temperature ferromagnetism in Sr_(1-x)Y_xCoO_(3-delta) (0.2 < x < 0.25)

    Full text link
    We have measured magnetic susceptibility and resistivity of Sr1−x_{1-x}Yx_xCoO3−δ_{3-\delta} (x=x= 0.1, 0.15, 0.2, 0.215, 0.225, 0.25, 0.3, and 0.4), and have found that Sr1−x_{1-x}Yx_xCoO3−δ_{3-\delta} is a room temperature ferromagnet with a Curie temperature of 335 K in a narrow compositional range of 0.2 ≤x≤\leq x\leq 0.25. This is the highest transition temperature among perovskite Co oxides. The saturation magnetization for x=x= 0.225 is 0.25 μB\mu_B/Co at 10 K, which implies that the observed ferromagnetism is a bulk effect. We attribute this ferromagnetism to a peculiar Sr/Y ordering.Comment: 5 pages, 4 figure

    Double polarization hysteresis loop induced by the domain pinning by defect dipoles in HoMnO3 epitaxial thin films

    Full text link
    We report on antiferroelectriclike double polarization hysteresis loops in multiferroic HoMnO3 thin films below the ferroelectric Curie temperature. This intriguing phenomenon is attributed to the domain pinning by defect dipoles which were introduced unintentionally during film growth process. Electron paramagnetic resonance suggests the existence of Fe1+ defects in thin films and first principles calculations reveal that the defect dipoles would be composed of oxygen vacancy and Fe1+ defect. We discuss migration of charged point defects during film growth process and formation of defect dipoles along ferroelectric polarization direction, based on the site preference of point defects. Due to a high-temperature low-symmetry structure of HoMnO3, aging is not required to form the defect dipoles in contrast to other ferroelectrics (e.g., BaTiO3).Comment: 4 figure
    • …
    corecore