270 research outputs found
Electronic structure study by means of X-ray spectroscopy and theoretical calculations of the "ferric star" single molecule magnet
The electronic structure of the single molecule magnet system
M[Fe(L)2]3*4CHCl3 (M=Fe,Cr; L=CH3N(CH2CH2O)2) has been studied using X-ray
photoelectron spectroscopy, X-ray absorption spectroscopy, soft X-ray emission
spectroscopy, and density functional calculations. There is good agreement
between theoretical calculations and experimental data. The valence band mainly
consists of three bands between 2 eV and 30 eV. Both theory and experiments
show that the top of the valence band is dominated by the hybridization between
Fe 3d and O 2p bands. From the shape of the Fe 2p spectra it is argued that Fe
in the molecule is most likely in the 2+ charge state. Its neighboring atoms
(O,N) exhibit a magnetic polarisation yielding effective spin S=5/2 per iron
atom, giving a high spin state molecule with a total S=5 effective spin for the
case of M = Fe.Comment: Fig.2 replaced as it will appear in J. Chem. Phy
A Theoretical Approach for Computing Magnetic Anisotropy in Single Molecule Magnets
We present a theoretical approach to calculate the molecular magnetic
anisotropy parameters, and for single molecule magnets in any
eigenstate of the exchange Hamiltonian, treating the anisotropy Hamiltonian as
a perturbation. Neglecting inter-site dipolar interactions, we calculate
molecular magnetic anisotropy in a given total spin state from the known
single-ion anisotropies of the transition metal centers. The method is applied
to and in their ground and first few excited eigenstates, as
an illustration. We have also studied the effect of orientation of local
anisotropies on the molecular anisotropy in various eigenstates of the exchange
Hamiltonian. We find that, in case of , the molecular anisotropy
depends strongly on the orientation of the local anisotropies and the spin of
the state. The value of is almost independent of the
orientation of the local anisotropy of the core ions. In the case of
, the dependence of molecular anisotropy on the spin of the state in
question is weaker.Comment: 8 pages, 12 figures, 2 table
Syntheses and Electronic Properties of Rhodium(III) Complexes Bearing a Redox-Active Ligand
A series of rhodium(III) complexes of the redox-active ligand, H(L = bis(4-methyl-2-(1H-pyrazol-1-yl)phenyl)amido), was prepared, and the electronic properties were studied. Thus, heating an ethanol solution of commercial RhCl3·3H2O with H(L) results in the precipitation of insoluble [H(L)]RhCl3, 1. The reaction of a methanol suspension of [H(L)]RhCl3 with NEt4OH causes ligand deprotonation and affords nearly quantitative yields of the soluble, deep-green, title compound (NEt4)[(L)RhCl3]·H2O, 2·H2O. Complex 2·H2O reacts readily with excess pyridine, triethylphosphine, or pyrazine (pyz) to eliminate NEt4Cl and give charge-neutral complexes trans-(L)RhCl2(py), trans-3, trans-(L)RhCl2(PEt3), trans- 4, or trans-(L)RhCl2(pyz), trans-5, where the incoming Lewis base is trans- to the amido nitrogen of the meridionally coordinating ligand. Heating solutions of complexes trans-3 or trans-4 above about 100 °C causes isomerization to the appropriate cis-3 or cis-4. Isomerization of trans-5 occurs at a much lower temperature due to pyrazine dissociation. Cis-3 and cis- 5 could be reconverted to their respective trans- isomers in solution at 35 °C by visible light irradiation. Complexes [(L)Rh(py)2Cl](PF6), 6, [(L)Rh(PPh3)(py)Cl](PF6), 7, [(L)Rh(PEt3)2Cl](PF6), 8, and [(L)RhCl(bipy)](OTf = triflate), 9, were prepared from 2·H2O by using thallium(I) salts as halide abstraction agents and excess Lewis base. It was not possible to prepare dicationic complexes with three unidentate pyridyl or triethylphosphine ligands; however, the reaction between 2, thallium(I) triflate, and the tridentate 4′-(4-methylphenyl)-2,2′:6′,2″-terpyridine (ttpy) afforded a high yield of [(L)Rh(ttpy)]- (OTf)2, 10. The solid state structures of nine new complexes were obtained. The electrochemistry of the various derivatives in CH2Cl2 showed a ligand-based oxidation wave whose potential depended mainly on the charge of the complex, and to a lesser extent on the nature and the geometry of the other supporting ligands. Thus, the oxidation wave for 2 with an anionic complex was found at +0.27 V versus Ag/AgCl in CH2Cl2, while those waves for the charge-neutral complexes 3−5 were found between +0.38 to +0.59 V, where the cis- isomers were about 100 mV more stable toward oxidation than the trans- isomers. The oxidation waves for 6−9 with monocationic complexes occurred in the range +0.74 to 0.81 V while that for 10 with a dicationic complex occurred at +0.91 V. Chemical oxidation of trans-3, cis-3, and 8 afforded crystals of the singly oxidized complexes, [trans- (L)RhCl2(py)](SbCl6), cis-[(L)RhCl2(py)](SbCl4)·2CH2Cl2, and [(L)Rh(PEt3)2Cl](SbCl6)2, respectively. Comparisons of structural and spectroscopic features combined with the results of density functional theory (DFT) calculations between nonoxidized and oxidized forms of the complexes are indicative of the ligand-centered radicals in the oxidized derivatives
Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH
Coordinate and redox interactions of epinephrine (Epi) with iron at physiological pH are essential for understanding two very different phenomena - the detrimental effects of chronic stress on the cardiovascular system and the cross-linking of catecholamine-rich biopolymers and frameworks. Here we show that Epi and Fe3+ form stable high-spin complexes in the 1:1 or 3:1 stoichiometry, depending on the Epi/Fe3+ concentration ratio (low or high). Oxygen atoms on the catechol ring represent the sites of coordinate bond formation within physiologically relevant bidentate 1:1 complex. Redox properties of Epi are slightly impacted by Fe3+. On the other hand, Epi and Fe2+ form a complex that acts as a strong reducing agent, which leads to the production of hydrogen peroxide via O-2 reduction, and to a facilitated formation of the Epi-Fe3+ complexes. Epi is not oxidized in this process, i.e. Fe2+ is not an electron shuttle, but the electron donor. Epi-catalyzed oxidation of Fe2+ represents a plausible chemical basis of stress-related damage to heart cells. In addition, our results support the previous findings on the interactions of catecholamine moieties in polymers with iron and provide a novel strategy for improving the efficiency of cross-linking.Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3040
ROS Initiated Oxidation of Dopamine under Oxidative Stress Conditions in Aqueous and Lipidic Environments
The importance of preferential solvation of the CN ligands in electron- and proton-transfers observed for cis-[Ru(CN)2(bpy)2] under ion bombardment
Stabilities of the Divalent Metal Ion Complexes of a Short-Chain Polyphosphate Anion and Its Imino Derivative
Concerning the Problem of the Isokinetic Relationship. IV. The Evaluation of the Isosubstituent Hammett Parameter by Means of Isokinetic and Isoequilibrium Temperatures
- …
