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We present a theoretical approach to calculate the molecular magnetic anisotropy parameters, DM

and EM for single molecule magnets in any eigenstate of the exchange Hamiltonian, treating the
anisotropy Hamiltonian as a perturbation. Neglecting inter-site dipolar interactions, we calculate
molecular magnetic anisotropy in a given total spin state from the known single-ion anisotropies of
the transition metal centers. The method is applied to Mn12Ac and Fe8 in their ground and first
few excited eigenstates, as an illustration. We have also studied the effect of orientation of local
anisotropies on the molecular anisotropy in various eigenstates of the exchange Hamiltonian. We
find that, in case of Mn12Ac, the molecular anisotropy depends strongly on the orientation of the
local anisotropies and the spin of the state. The DM value of Mn12Ac is almost independent of the
orientation of the local anisotropy of the core Mn(IV ) ions. In the case of Fe8, the dependence of
molecular anisotropy on the spin of the state in question is weaker.

PACS numbers: 75.50.Xx, 75.30.Gw

I. INTRODUCTION

Following the synthesis and the discovery of exotic
properties such as quantum resonant tunneling (QRT)
in the single molecule magnet (SMM) Mn12Ac during
the 1990s, there has been a flurry of activity in the field
of molecular magnetism [1, 2, 3, 4]. This has led to the
synthesis of new systems such as Fe8 as well as to the
observation of new phenomena such as quantum coher-
ence [5, 6]. SMMs are mainly high nuclearity transition
metal complexes with a high-spin ground state (SGS).
They are also characterized by large uniaxial magnetic
anisotropy [7]. The Hamiltonian corresponding to the
magnetic anisotropy of a molecular system can be writ-
ten as,

ĤD = ŜM · D(M) · ŜM (1)

where, ŜM is the spin operator for the total spin of the
molecule and D(M) is the magnetic anisotropy tensor of
the molecule. In usual practice, the anisotropy tensor is
diagonalized and the principle axis of the molecule would
correspond to the eigenvectors of the tensor. Since in
most physical situations, the quantity of interest is the
energy gaps between the otherwise degenerate states split
by the magnetic anisotropy, the condition of zero trace
is imposed on the D(M) tensor. If, DM

XX , DM
Y Y and DM

ZZ
are the molecular anisotropies along the three principal
directions such that DM

XX + DM
Y Y + DM

ZZ = 0, we can
define two parameters, DM and EM given by,

DM = DM
ZZ −

1
2
(
DM
XX +DM

Y Y

)
EM =

1
2
(
DM
XX −DM

Y Y

)
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where, DM and EM are called the axial and rhombic
anisotropies respectively. This leads to the common form
of the magnetic anisotropy Hamiltonian of a SMM,

ĤM = DM

(
Ŝ2
Z −

1
3
S(S + 1)

)
+ EM

(
Ŝ2
X − Ŝ2

Y

)
(2)

For the single molecule magnet to have nonzero mag-
netization in the ground state, it is necessary that the
anisotropy constant DM in the spin Hamiltonian (Eq. 2)
of the complex be negative; this ensures that the ground
state of the system then would correspond to the high-
est magnetization state of the molecule, in its high-spin
ground state. This requirement of negative DM , besides
a high-spin ground state makes it hard to tailor SMMs.
The second order transverse or rhombic anisotropy given
by the last term in Eq. 2, allows transition between states
with spin S that differ in their Ms values by two. EM will
be zero if the S2

X − S2
Y operator does not remain invari-

ant under symmetry of the molecule. In this case higher
order spin-spin interaction terms are required to observe
QRT. For example, the D2d symmetry in Mn12Ac pro-
hibits the existence of first order rhombic anisotropy.
Thus, the parameters DM and EM govern the quantum
tunneling properties of a SMM and inputs from theoreti-
cal modeling could help in designing the architecture for
the synthesis of SMMs.

Theoretical modeling of SMMs presents two difficul-
ties. Firstly, the complexes contain many spin centers,
and often these centers have different spins as in the case
of Mn12Ac, where the four Mn(IV ) ions have spin-3/2,
while the eight Mn(III) ions have spin-2. In these sys-
tems, usually there exist multiple exchange pathways be-
tween any given pair of ions leading to uncertain mag-
nitude and sign of the magnetic interactions in the sys-
tem. The topology of magnetic interactions also is often
such as to result in magnetic frustration leading to closely
spaced low-lying states of unpredictable total spin. Thus,
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FIG. 1: Schematic of possible exchange interactions in
Mn12Ac SMM. The peripheral Mn(III) ions represented by
blue circles correspond to spin-2 sites and those represented
by yellow circles are the core Mn(IV ) ions each of spin-3/2.
Js are the strength of superexchange interaction with J1=215
K, J2=J3=85.6 K, J4=-64.5 K [9].

solving even the simple Heisenberg exchange Hamilto-
nian of these systems turns out to be a challenge. If we
do not employ a spin adapted basis to set-up the Hamil-
tonian matrix we could encounter convergence difficulties
associated with closely spaced eigenvalues even when the
corresponding eigenstates belong to different total spin
sectors. However, the assorted spin cluster that a SMM is
renders construction of spin adapted basis difficult. This
problem has been addressed by resorting to a valence
bond scheme for construction of the spin adapted basis
and we are now in a position to block-diagonalize the
Hamiltonian by exploiting both spin and spatial symme-
tries [8]. Thus, while the challenge of accurately solving
the exchange Hamiltonian of a large assorted spin sys-
tem with arbitrary topology of exchange interactions is
within grasp, the challenge of computing the magnetic
anisotropy constants of a SMM still remains.

The magnetic anisotropy in an isolated ion arises from
explicit dipolar interactions between the unpaired elec-
trons in the magnetic center as well as from relativistic
(spin-orbit) interactions. The former is the main ori-
gin of zero field splitting observed in triplet states of
conjugated organic molecules such as naphthalene [10].
However, in systems containing heavier elements the rel-
ativistic effects dominate. In a system with several mag-
netic centers such as a SMM, given the spin and sin-
gle ion anisotropy of each magnetic center, the mag-
netic anisotropy could arise both from dipolar interac-
tions between magnetic centers and relativistic effects.
Theoretically, magnetic anisotropy of an isolated mag-
netic center in an appropriate ligand environment can
be computed within density functional techniques (DFT)
[11, 12]. However, in the case of the SMMs with many
magnetic centers, such a calculation is both conceptu-
ally and computationally difficult, since DFT methods

FIG. 2: Schematic of local (x, y, z) and laboratory (X, Y , Z)
coordinate axes in Mn12Ac. The blue, green and red spheres
correspond toMn(III) (spin-2), Mn(IV ) (spin-3/2) and oxy-
gen ions respectively. The arrows indicate the Mn-O bonds
on which the chosen local x-axis has maximum projection.

do not conserve total spin. The usual approach in these
cases is to carry out simple tensoral summation of the
anisotropies of the constituent magnetic centers to ob-
tain the magnetic anisotropy in the SMMs along the lines
of an oriented gas model employed in the calculation of
macroscopic nonlinear optic (NLO) coefficients from iso-
lated molecular NLO coefficients [13, 14, 15]. Such an
approach, in the case of SMMs, suffers from the draw-
back that the anisotropy constants so computed are in-
dependent of the total spin state of the molecule. In
this paper, we treat the anisotropic magnetic interaction
between the magnetic centers as a perturbation over the
magnetic exchange Hamiltonian of the SMM. We exactly
solve for the various total spin states of the unperturbed
Hamiltonian and from the desired eigenstates obtain the
spin-spin correlation functions necessary to compute the
anisotropy constants. In the next section we describe the
method in detail. In the third section we present the re-
sults of our studies on the two SMMs, Mn12Ac and Fe8.
In the fourth section we summarize our studies and out-
line the extension of this method for the computation of
higher order magnetic anisotropy constants.

II. FORMULATION OF THE METHOD

We treat the exchange Hamiltonian between magnetic
centers in the SMMs as the unperturbed Hamiltonian,

Ĥ0 =
∑
〈ij〉

JijŜi · Ŝj (3)

where, 〈ij〉 runs over all pairs of centers in the model
for which the exchange constant is nonzero, Ŝi is the spin
on the ith magnetic center. In SMMs such as Mn12Ac
the spins at all the magnetic centers are not the same and
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FIG. 3: Schematic diagram showing the directions of local
anisotropy in Mn12Ac. The single-ion anisotropies of all the
Mn ions are directed along the laboratory Z axis (Scheme 1).

the exchange interactions are shown in Fig. 1. H0 can
be solved exactly for a few low-lying states in a chosen
spin sector by using methods that have been described
in detail elsewhere [9].

The general anisotropic interactions in a collection of
magnetic centers is treated as a perturbation with Hamil-
tonian Ĥ ′1 is given by,

Ĥ ′1 =
1
2

∑
i

∑
j

∑
α

∑
β

Dij,αβŜ
α
i Ŝ

β
j (4)

where, the indices i and j run over all the magnetic cen-
ters and α and β run over x, y and z directions of the
ion. The contributions to inter-center anisotropy con-
stant arise due to dipolar interaction between the spins
on the two centers as well as due to relativistic effects.
In the former, Dij,αβ is given by,

Dij,αβ =
1
2
g2µ2

B

〈
R2
ijδαβ − 3Rij,αRij,β

R5
ij

〉
(5)

whereRij (Rij) is the vector (distance) between the mag-
netic centers i and j, g is the gyromagnetic ratio and µB
is the electronic Bohr magneton; the expectation value
in Eq. 5 is obtained by integration over spatial coor-
dinates [16]. Approximating the expectation values of
the distances by the equilibrium distances, the Dij,αβ in
Eq. 5 and by computing the necessary spin-spin corre-
lation functions, we can obtain the molecular D(M)

αβ ten-
sor [17]. The eigenvalues of this matrix give the princi-
pal anisotropy values and imposing the condition of zero
trace of the matrix yields molecular magnetic anisotropy
constants due to spin-spin interactions. Our computation
of the magnetic anisotropy constants, assuming only spin
dipolar interactions for the SMMs Mn12Ac and Fe8 gives
negligible values of the anisotropy constants compared to
the experimental values of DM = -0.7 K and -0.28 K re-
spectively in the S=10 ground state [18, 19]. Hence in
what follows, we completely neglect the contribution of
spin-dipolar interactions and focus only on the magnetic
anisotropy of the SMMs arising from the anisotropy of in-
dividual magnetic centers. The latter is a consequence of

FIG. 4: Schematic diagram showing the directions of local
anisotropy in Mn12Ac. The z-component of the single-ion
anisotropies of all the Mn(III) ions are inclined at an angle
θ to the laboratory Z and while that of the Mn(IV ) ions are
kept fixed at ∼ 48◦ (Scheme 2).

mainly spin-orbit interactions. We now assume that the
interactions responsible for magnetic anisotropy are short
ranged and neglect inter-center contributions to magnetic
anisotropy in Eq. 4. This is justified since relativis-
tic (spin-orbit) interactions, largely responsible for the
anisotropy is short ranged (falling off as 1/r3) and the
distances between the magnetic centers is much larger
compared to the ionic radius of the transition metal ion.
The resulting perturbation term is given by,

Ĥ1 =
∑
i

∑
α

∑
β

Di,αβŜ
α
i Ŝ

β
i (6)

where, only on-site terms are retained. If the individual
magnetic centers have different principal axes then we
choose a laboratory frame and project the local tensor
components on to the laboratory frame. In such a case,
Eq. 6 gets modified to,

Ĥ1 =
∑
i

∑
α

∑
β

∑
l

∑
m

Ci,lαCi,mβDi,αβŜ
α
i Ŝ

β
i (7)

Where, Ci,lα are the direction cosines of the local axis
of the ith magnetic center with the l(m) being the co-
ordinate of the laboratory frame and α(β) being the lo-
cal coordinates. Since, the Hamiltonians in Eq. 1 and
7 are equivalent, we can equate the matrix elements
〈n, SM ,M |Ĥ1|n, SM ,M ′〉 and 〈SM ,M |ĤM |SM ,M ′〉 for
any pair of eigenstates of the exchange Hamiltonian in
Eq. 3; |M〉 and |M ′〉 correspond to a state n with spin
SM in which we are interested. Calculating these ma-
trix elements for ĤM is straightforward from the algebra
of spin operators. However, evaluation of these matrix
elements between eigenstates of Ĥ0, requires computing
them in the basis of the spin orientation of the sites. From
a given eigenstate of Ĥ0, |n, S,M〉, we can compute all
eigenstates with different M values by using ladder oper-
ators corresponding to spin S. Given a S value, the above
condition would give rise to (2S + 1)2 equations, while
the tensor D(M), has only nine components. Thus, for
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FIG. 5: Schematic diagram showing the directions of local
anisotropy in Mn12Ac. The z-component of the single-ion
anisotropies of all the Mn ions are directed along the plane
perpendicular to the laboratory Z axis (Scheme 3).

the Mn12Ac system, with ground state spin of 10, there
would be 441 equations and we have more equations than
unknowns. However, we could take any nine equations
and solve for the components of the tensor D(M) and we
would get unique values of the components. This is guar-
anteed by the Wigner-Eckart theorem and we have also
verified this by solving for the D(M) tensor from several
arbitrarily different selections of the nine equations.

III. RESULTS AND DISCUSSION

We have computed DM and EM values for both
Mn12Ac and Fe8 systems for different orientations of
local anisotropy. We have used the single-ion anisotropy
values quoted in the literature for complexes of these ions
in similar ligand environments [20, 21, 22, 23]. While
discussing the results, we refer to the local axis of the
ions as x, y and z and the laboratory axis is denoted as
X, Y and Z. The laboratory frame we choose can be
arbitrary. This is because, on determining D(M) in the
laboratory frame, we diagonalize it and the principal axis
of the molecule is given by the eigenvectors of the D(M)

matrix. The principal axes of the molecule are unique
and do not depend on the laboratory frame that is se-
lected. We have computed the anisotropy parameters for
both these systems as a function of the angle θ which the
z-axis of the ion makes with the laboratory Z-axis. The
orientation of z-component of the single-ion anisotropy
in every site is shown in Fig. 3, 4 and 5 (schemes 1, 2
and 3) for Mn12Ac and in Fig. 8, 9, and 10 (schemes 4, 5
and 6) for Fe8 systems respectively. Once the z-axis (~z)
of the ion is fixed, then ~x is obtained by Gram-Schmidt
orthogonalization procedure. Though the choice of this
vector is arbitrary in a plane perpendicular to z-axis, we
have fixed the direction of ~x such as to have maximum
projection along a M -O (M=Mn, Fe) bond in Mn12Ac

0 30 60 90 120 150 180
θ (degree)
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S=8

S=10, only 
core ions
rotated

FIG. 6: Variation of DM as a function of θ, the angle the
z-component of local anisotropy of Mn(III) ions makes with
the laboratory Z-axis for scheme 2, in eigenstates with total
spin 10, 9 and 8. The orientation of Mn(IV ) ions is kept
fixed at ∼ 48◦ from the molecular Z-axis. The curve with
filled circles correspond to the variation of DM , when the
local anisotropies of the core Mn(IV ) ions only are rotated
and those of Mn(III) ions are fixed along the Z axis.

as well as in Fe8 (Fig. 2 and Fig. 10). If ~O is the vector
connecting a M site and a neighbouring O ion, then we
obtain ~x from,

~x = ~O −
(
~O · ~z

)
~z (8)

Then, the y-axis of the ion is obtained by taking cross
product of the ~z and ~x, ~y = ~z× ~x. These three mutually
orthogonal vectors are then normalized to obtain the or-
thonormal set of coordinate axes x, y and z of the ion
centre. The single ion local axes is represented in the
laboratory frame as,

x = Ci,XxX + Ci,Y xY + Ci,ZxZ

y = Ci,XyX + Ci,Y yY + Ci,ZyZ

z = Ci,XzX + Ci,Y zY + Ci,ZzZ (9)

where, Cs are the direction cosines of Eq. 7 and the in-
dex i correspond to the site i. The procedure is repeated
for every magnetic ion to obtain coordinate axes set x, y
and z and the direction cosines in each case. We have ob-
tained the magnetic anisotropy parameters DM and EM
for Mn12Ac and Fe8 clusters as a function of the angle
of rotation of the local z-axis with respect to the labora-
tory Z-axis. In the following subsections, we discuss the
results for the two clusters.

A. Magnetic anisotropy in Mn12Ac SMM

We have first obtained the ground state and few ex-
cited states of the Mn12Ac system by exactly solving the
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TABLE I: DM values of ground and excited states of Mn12Ac
under various schemes in K. For scheme 2, we have presented
the DM values only for θ=26.2◦ for which the DM value of
the ground state matches with the experimentally observed
value.

State
DM (K)

Scheme 1 Scheme 2 Scheme 3
Ground state (S=10) -0.8028 -0.7209 0.3991

First excited state
-0.6722 -0.6105 0.3341

(S=9) Eg=35.1 K
Second excited state

-0.5009 -0.4664 0.2488
(S=8) Eg=60.4 K

unperturbed Hamiltonian given in Eq. 3, using the ex-
change interactions shown in Fig. 1 [9]. The ground state
of the system corresponds to total spin 10 with a total
spin 9 excited state at 35.1 K from the ground state. The
second excited state occurs at 60.4 K from the ground
state and corresponds to total spin 8. To obtain the
molecular anisotropy values in these eigenstates, we have
used different single-ion axial anisotropy values of -5.35
K and 1.226 K respectively for Mn(III) and Mn(IV )
ions. We have also introduced transverse anisotropy of
0.022 K and 0.043 K for Mn(III) and Mn(IV ) sites
respectively. We have studied the variation of molecu-
lar anisotropy as a function of orientation of the local
anisotropies by rotating the local D tensor around the
molecular Z-axis. Scheme 1 shown in Fig. 3 corresponds
to the case when all the single-ion z axes are pointed par-
allel to the laboratory Z direction. In scheme 2 (Fig. 5),
we have fixed the orientation of the local anisotropies of
the core Mn(IV ) ions along the line joining the ion and
the molecular centre (∼ 48◦ from the laboratory Z-axis),
while the anisotropies of the Mn(III) ions is rotated
and the angle which it makes with the molecular Z-axis
is defined as θ (refer Fig. 4). The orientation of the local
anisotropy of Mn(III) ions for which we get the best
agreement with experiments corresponds to θ = 26◦. In
scheme 3 (Fig. 5), we have restricted the z-component of
single-ion anisotropy to the laboratory X −Y plane. We
have studied the variation in the molecular anisotropies
in these schemes for ground and the excited eigenstates.
We show in Table I, theDM values for the ground and the
excited spin states of the molecule for schemes 1, 2 and 3.
We note that when the local anisotropies are systemati-
cally varied, there is a very large variation in the molecu-
lar anisotropy as a function of the local orientation (Fig.
6). This seems to be true for all the states of Mn12Ac
we have studied. We note that given the orientations of
local anisotropies, the actual molecular anisotropy values
are different in different spin eigenstates. This may be
rationalized from the fact that the energy gaps between
the ground and the excited states are large as a conse-
quence of which the spin correlations in these states are
very different. We also note that in all cases, from the
eigenvectors of the D(M) matrix, we find that the choice
of our laboratory frame is very close to the principal axis

FIG. 7: Schematic of exchange interactions in Fe8 SMM. Js
are the strength of superexchange interaction with J1=150 K,
J2=25 K, J3=30 K, J4=50 K [9].

FIG. 8: Schematic diagram showing the directions of lo-
cal anisotropy in Fe8. The single-ion anisotropies of all the
Fe(III) ions are directed along the laboratory Z axis (Scheme
4).

of the molecular system.

We also examined the role of magnetic orientations of
the core Mn(IV ) ions (s=3/2) and the crown Mn(III)
ions (s=2) in determining the molecular anisotropies by
fixing the single ion orientation of the crown Mn(III)
ions at 0◦ and rotating only the orientation of the core
Mn(IV ) ions systematically. The variation ofDM for the
S=10 ground state as a function of rotation of the local
anisotropies of the core Mn(IV ) ions is shown in Fig. 6.
We find that the molecular anisotropy is not sensitive to
the local orientations of the core Mn(IV ) ions while the
orientation of the crown Mn(III) ions control the vari-
ation of the molecular magnetic anisotropy in Mn12Ac.
It should be noted that, in the case of Mn12Ac, EM van-
ishes by virtue of the D2d point group symmetry to which
the molecule belongs.
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B. Magnetic anisotropy in Fe8 SMM

We have also computed the values of molecular
anisotropy for the Fe8 molecular magnet. The unper-
turbed Hamiltonian in Eq. 3 is exactly solved using
exchange parameters, J1=150 K, J2=25 K, J3=30 K,
J4=50 K (Fig. 7) [9]. The ground state of the system cor-
responds to total spin S=10 with a S=9 state at 13.56 K,
a S=9 state at 27.28 K and a S=8 state at 28.33 K above
the ground state. To calculate the magnetic anisotropy
of Fe8, we have taken the single ion axial and rhombic
anisotropy values for Fe(III) centers to be 1.96 K and
0.008 K respectively. Using these, we have computed the
molecular anisotropy values for three schemes (Schemes
4, 5 and 6) shown in Fig. 8, 9 and 10. Scheme 4 corre-
sponds to the case wherein the single-ion anisotropy of all
the Fe(III) ions are pointed along the laboratory Z di-
rection. In scheme 5, the anisotropies of the Fe(III) ions
are inclined at an angle θ to the laboratory Z-axis (refer
Fig. 9). In Scheme 6, we have restricted the z-component
of single-ion anisotropy to the laboratory X-Y plane. We
have studied the variation in the molecular anisotropies
as a function of orientation of local anisotropy in these
schemes for ground and the excited eigenstates (Fig. 11).
We show in Table II, the DM values for the ground and
the excited spin states of the molecule for schemes 4, 5
and 6. We note that when the local anisotropies are sys-
tematically varied, there is a very large variation in the
molecular anisotropy as a function of the local orientation
(Fig. 11), similar to Mn12Ac, in all the eigenstates that
we have studied. We also note that given the orientations
of local anisotropies, the actual molecular anisotropy val-
ues are not very different in different spin eigenstates,
since the energy gaps between the ground and the ex-
cited states are small and since the spin correlations in
these states are not significantly different. The orienta-
tion of the local anisotropy centers for which we get the
best agreement with experiments (DM = -0.28 K) cor-
responds to θ ∼ 99◦ [22, 23]. As with Mn12Ac, we find
that the laboratory frame we have chosen is very close
to molecular axis in all the cases. In case of Fe8 cluster,
the D2 symmetry commutes with the Hamiltonian in Eq.
2 and allows for a non-zero EM term. The variation of
EM as a function of θ is shown in Fig. 12, the value of
EM for which DM has the best fit is 0.017 K compared
to the experimental estimate of 0.046 K obtained from
High-frequency EPR measurements [19].

IV. CONCLUSIONS

In this paper we presented a general method to calcu-
late the molecular magnetic anisotropy parameters, DM

and EM for single molecule magnets in a chosen eigen-
state of the exchange Hamiltonian. Since, anisotropy is
generally weak in SMMs compared to exchange interac-
tion, we treat the anisotropy Hamiltonian as a pertur-
bation over the exchange Hamiltonian. Calculation of

FIG. 9: Schematic diagram showing the directions of lo-
cal anisotropy in Fe8. The z-component of the single-ion
anisotropies of all the Fe(III) ions are inclined at an angle θ
to the laboratory Z axis (Scheme 5).

FIG. 10: Schematic diagram showing the directions of lo-
cal anisotropy in Fe8. The z-component of the single-ion
anisotropies of all the Fe(III) ions are directed along the
plane perpendicular to the laboratory Z axis (Scheme 6). The
arrows indicate the Fe-O bonds on which the chosen local x-
axis has maximum projection.

TABLE II: DM values of ground and excited states of Fe8
under schemes 4, 5 and 6 in K. For scheme 5, we have pre-
sented the DM values only for θ=98.78◦ for which the DM

value of the ground state matches with the experimentally
observed value.

State
DM (K)

Scheme 4 Scheme 5 Scheme 6
Ground state (S=10) 0.6030 -0.2892 -0.3034

First excited state
0.5821 -0.2783 -0.2923

(S=9) Eg=13.56 K
Second excited state

0.5877 -0.2797 -0.2952
(S=9) Eg=27.28 K
Third excited state

0.5503 -0.2694 -0.2758
(S=8) Eg=28.33 K
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FIG. 11: Variation of DM in Fe8 cluster as a function of θ,
the angle the z-component of local anisotropy of Fe(III) ions
makes with the laboratory Z-axis for scheme 5.
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FIG. 12: Variation of EM in Fe8 cluster as a function of θ,
the angle the z-component of local anisotropy of Fe(III) ions
makes with the laboratory Z-axis for scheme 5.

DM and EM values assuming only dipolar interactions
between the transition metal ions give negligible values

of molecular magnetic anisotropy compared to the ex-
perimental values. Therefore, we focus on the molecular
anisotropy from the single-ion anisotropies of the individ-
ual transition metal centers in the SMM. The single-ion
anisotropy has relativistic origin, (spin-orbit interactions
generally dominate over dipolar interactions between un-
paired electrons in case of transition metal ions) and are
hence short ranged with inverse cube dependence on dis-
tance. Therefore, we neglect interaction between spin
moment on one ion with the orbital moment on another.
This approximation simplifies the perturbation Hamilto-
nian. The molecular anisotropies are computed from the
single-ion anisotropies, using first order perturbation the-
ory for different spin states of the SMMs. We have com-
puted the molecular magnetic anisotropy parameters of
Mn12Ac and Fe8 SMMs in various eigenstates of differ-
ent total spin. We also studied the variation of molecular
anisotropy by rotating the local anisotropy of the metal
ions. In case of Mn12Ac, we find that the molecular
anisotropy changes drastically with the local anisotropy
direction. The DM value is different in ground and ex-
cited states we have computed, owing to large difference
in spin-spin correlation values. The molecular anisotropy
of Mn12Ac does not change significantly with the orien-
tation of the local anisotropy of the core Mn(IV) ions. In
the case of Fe8 cluster also, we find that the molecular
anisotropy parameters depend strongly on the orienta-
tion of the local anisotropy. DM value is not very differ-
ent in ground and excited states probably due to small
energy gaps which implies similar spin-spin correlations.
In case of Mn12Ac, the first order rhombic anisotropy
term is zero due to the D2d symmetry of the molecule
while it is non-zero in Fe8. The second order rhombic
anisotropy terms commute with the molecular symmetry
of the Mn12Ac cluster and cause tunneling between the
states on either side of the double potential well. Our
method can also be extended to the calculation of these
anisotropy constants.
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