570 research outputs found
A Search for Water in the Atmosphere of HAT-P-26b Using LDSS-3C
The characterization of a physically-diverse set of transiting exoplanets is
an important and necessary step towards establishing the physical properties
linked to the production of obscuring clouds or hazes. It is those planets with
identifiable spectroscopic features that can most effectively enhance our
understanding of atmospheric chemistry and metallicity. The newly-commissioned
LDSS-3C instrument on Magellan provides enhanced sensitivity and suppressed
fringing in the red optical, thus advancing the search for the spectroscopic
signature of water in exoplanetary atmospheres from the ground. Using data
acquired by LDSS-3C and the Spitzer Space Telescope, we search for evidence of
water vapor in the transmission spectrum of the Neptune-mass planet HAT-P-26b.
Our measured spectrum is best explained by the presence of water vapor, a lack
of potassium, and either a high-metallicity, cloud-free atmosphere or a
solar-metallicity atmosphere with a cloud deck at ~10 mbar. The emergence of
multi-scale-height spectral features in our data suggests that future
observations at higher precision could break this degeneracy and reveal the
planet's atmospheric chemical abundances. We also update HAT-P-26b's transit
ephemeris, t_0 = 2455304.65218(25) BJD_TDB, and orbital period, p =
4.2345023(7) days.Comment: 9 pages, 8 figures, Accepted for publication in Ap
New Analysis Indicates No Thermal Inversion in the Atmosphere of HD 209458b
An important focus of exoplanet research is the determination of the
atmospheric temperature structure of strongly irradiated gas giant planets, or
hot Jupiters. HD 209458b is the prototypical exoplanet for atmospheric thermal
inversions, but this assertion does not take into account recently obtained
data or newer data reduction techniques. We re-examine this claim by
investigating all publicly available Spitzer Space Telescope secondary-eclipse
photometric data of HD 209458b and performing a self-consistent analysis. We
employ data reduction techniques that minimize stellar centroid variations,
apply sophisticated models to known Spitzer systematics, and account for
time-correlated noise in the data. We derive new secondary-eclipse depths of
0.119 +/- 0.007%, 0.123 +/- 0.006%, 0.134 +/- 0.035%, and 0.215 +/- 0.008% in
the 3.6, 4.5, 5.8, and 8.0 micron bandpasses, respectively. We feed these
results into a Bayesian atmospheric retrieval analysis and determine that it is
unnecessary to invoke a thermal inversion to explain our secondary-eclipse
depths. The data are well-fitted by a temperature model that decreases
monotonically between pressure levels of 1 and 0.01 bars. We conclude that
there is no evidence for a thermal inversion in the atmosphere of HD 209458b.Comment: 8 pages, 5 figures; accepted for publication in Ap
Local perceptions of opportunities for engagement and procedural justice in electricity transmission grid projects in Norway and the UK
ArticleCopyright © 2015 Elsevier Ltd. All rights reserved.Transmission lines are critical infrastructures, but frequently contested especially at the local level, by local communities. The role of public engagement in processes pertaining to specific transmission line projects is an under-researched, yet important topic that this paper seeks to discuss by investigating how inhabitants perceive these processes and to what extent they find the processes just and fair. This paper addresses the participatory aspects of the planning process, as perceived by the local inhabitants in four Norway and UK cases, by using a qualitative comparative case study design. We further analyse this issue through frameworks of public engagement and procedural justice. In both countries public engagement is largely characterized by perceptions of insufficient information, and insufficient influence on the process. In sum, the findings indicate that the informants generally perceive the opportunities for involvement as insufficient and unjust. The findings are quite similar across all cases and both countries. Local inhabitants represent diverse groups who often have different levels of knowledge, time and engagement to bring to the planning process. Their requests for improved processes thus underline the serious public engagement challenges that applicants and decision-makers face.Research Council of Norwa
Detection of Helium in the Atmosphere of the Exo-Neptune HAT-P-11b
The helium absorption triplet at a wavelength of 10,833 \AA\ has been
proposed as a way to probe the escaping atmospheres of exoplanets. Recently
this feature was detected for the first time using Hubble Space Telescope (HST)
WFC3 observations of the hot Jupiter WASP-107b. We use similar HST/WFC3
observations to detect helium in the atmosphere of the hot Neptune HAT-P-11b at
the confidence level. We compare our observations to a grid of 1D
models of hydrodynamic escape to constrain the thermospheric temperatures and
mass loss rate. We find that our data are best fit by models with high mass
loss rates of - g s. Although we do
not detect the planetary wind directly, our data are consistent with the
prediction that HAT-P-11b is experiencing hydrodynamic atmospheric escape.
Nevertheless, the mass loss rate is low enough that the planet has only lost up
to a few percent of its mass over its history, leaving its bulk composition
largely unaffected. This matches the expectation from population statistics,
which indicate that close-in planets with radii greater than 2 R
form and retain H/He-dominated atmospheres. We also confirm the independent
detection of helium in HAT-P-11b obtained with the CARMENES instrument, making
this the first exoplanet with the detection of the same signature of
photoevaporation from both ground- and space-based facilities.Comment: 12 pages, 9 figures, accepted for publication in ApJ
A Precise Water Abundance Measurement for the Hot Jupiter WASP-43b
The water abundance in a planetary atmosphere provides a key constraint on
the planet's primordial origins because water ice is expected to play an
important role in the core accretion model of planet formation. However, the
water content of the Solar System giant planets is not well known because water
is sequestered in clouds deep in their atmospheres. By contrast, short-period
exoplanets have such high temperatures that their atmospheres have water in the
gas phase, making it possible to measure the water abundance for these objects.
We present a precise determination of the water abundance in the atmosphere of
the 2 short-period exoplanet WASP-43b based on thermal
emission and transmission spectroscopy measurements obtained with the Hubble
Space Telescope. We find the water content is consistent with the value
expected in a solar composition gas at planetary temperatures (0.4-3.5x solar
at 1 confidence). The metallicity of WASP-43b's atmosphere suggested
by this result extends the trend observed in the Solar System of lower metal
enrichment for higher planet masses.Comment: Accepted to ApJL; this version contains three supplemental figures
that are not included in the published paper. See also our companion paper
"Thermal structure of an exoplanet atmosphere from phase-resolved emission
spectroscopy" by Stevenson et a
- …
