1,187 research outputs found

    Gridded and direct Epoch of Reionisation bispectrum estimates using the Murchison Widefield Array

    Full text link
    We apply two methods to estimate the 21~cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the multiple redundantly-spaced triangles of antenna tiles, as well as an estimate based on data gridded to the uvuv-plane. The direct and gridded bispectrum estimators are applied to 21 hours of high-band (167--197~MHz; zz=6.2--7.5) data from the 2016 and 2017 observing seasons. Analytic predictions for the bispectrum bias and variance for point source foregrounds are derived. We compare the output of these approaches, the foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 hours, while equilateral configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that hinders power spectrum estimators, and the 21~cm bispectrum may be accessible in less time than the 21~cm power spectrum for some wave modes, with detections in hundreds of hours.Comment: 19 pages, 10 figures, accepted for publication in PAS

    Modelling and peeling extended sources with shapelets: a Fornax A case study

    Get PDF
    To make a power spectrum (PS) detection of the 21 cm signal from the Epoch of Reionisation (EoR), one must avoid/subtract bright foreground sources. Sources such as Fornax A present a modelling challenge due to spatial structures spanning from arc seconds up to a degree. We compare modelling with multi-scale (MS) CLEAN components to 'shapelets', an alternative set of basis functions. We introduce a new image-based shapelet modelling package, SHAMFI. We also introduce a new CUDA simulation code (WODEN) to generate point source, Gaussian, and shapelet components into visibilities. We test performance by modelling a simulation of Fornax A, peeling the model from simulated visibilities, and producing a residual PS. We find the shapelet method consistently subtracts large-angular-scale emission well, even when the angular-resolution of the data is changed. We find that when increasing the angular-resolution of the data, the MS CLEAN model worsens at large angular-scales. When testing on real MWA data, the expected improvement is not seen in real data because of the other dominating systematics still present. Through further simulation we find the expected differences to be lower than obtainable through current processing pipelines. We conclude shapelets are worthwhile for subtracting extended galaxies, and may prove essential for an EoR detection in the future, once other systematics have been addressed.Comment: 17 pages, 11 Figures, accepted for publication in Publications of the Astronomical Society of Australia (18/05/2020). "For the SHAMFI code, see: https://github.com/JLBLine/SHAMFI" . "For the SHAMFI documentation, see: https://shamfi.readthedocs.io/" . "For the WODEN code and documentation see: https://github.com/JLBLine/WODEN

    Measuring the global 21-cm signal with the MWA-I:improved measurements of the Galactic synchrotron background using lunar occultation

    Get PDF
    We present early results from a project to measure the sky-averaged (global), redshifted 21 cm signal from the Epoch of Reionization (EoR), using the Murchison Widefield Array (MWA) telescope. Because interferometers are not sensitive to a spatially invariant global average, they cannot be used to detect this signal using standard techniques. However, lunar occultation of the radio sky imprints a spatial structure on the global signal, allowing us to measure the average brightness temperature of the patch of sky immediately surrounding the Moon. In this paper, we present one night of Moon observations with the MWA between 72-230 MHz and verify our techniques to extract the background sky temperature from measurements of the Moon's flux density. We improve upon previous work using the lunar occultation technique by using a more sophisticated model for reflected 'earthshine' and by employing image differencing to remove imaging artefacts. We leave the Moon's (constant) radio brightness temperature as a free parameter in our fit to the data and as a result, measure T-moon = 180 +/- 12 K and a Galactic synchrotron spectral index of -2.64 +/- 0.14, at the position of the Moon. Finally, we evaluate the prospects of the lunar occultation technique for a global EoR detection and map out a way forward for future work with the MWA.</p

    An L Band Spectrum of the Coldest Brown Dwarf

    Get PDF
    The coldest brown dwarf, WISE 0855, is the closest known planetary-mass, free-floating object and has a temperature nearly as cold as the solar system gas giants. Like Jupiter, it is predicted to have an atmosphere rich in methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint at near-infrared wavelengths and emits almost all its energy in the mid-infrared. Skemer et al. 2016 presented a spectrum of WISE 0855 from 4.5-5.1 micron (M band), revealing water vapor features. Here, we present a spectrum of WISE 0855 in L band, from 3.4-4.14 micron. We present a set of atmosphere models that include a range of compositions (metallicities and C/O ratios) and water ice clouds. Methane absorption is clearly present in the spectrum. The mid-infrared color can be better matched with a methane abundance that is depleted relative to solar abundance. We find that there is evidence for water ice clouds in the M band spectrum, and we find a lack of phosphine spectral features in both the L and M band spectra. We suggest that a deep continuum opacity source may be obscuring the near-infrared flux, possibly a deep phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE 0855 provide critical constraints for cold planetary atmospheres, bridging the temperature range between the long-studied solar system planets and accessible exoplanets. JWST will soon revolutionize our understanding of cold brown dwarfs with high-precision spectroscopy across the infrared, allowing us to study their compositions and cloud properties, and to infer their atmospheric dynamics and formation processes.Comment: 19 pages, 21 figures. Accepted for publication in Ap

    Retrieval Analysis of the Emission Spectrum of WASP-12b: Sensitivity of Outcomes to Prior Assumptions and Implications for Formation History

    Get PDF
    We analyze the emission spectrum of the hot Jupiter WASP-12b using our HELIOS-R retrieval code and HELIOS-K opacity calculator. When interpreting Hubble and Spitzer data, the retrieval outcomes are found to be prior-dominated. When the prior distributions of the molecular abundances are assumed to be log-uniform, the volume mixing ratio of HCN is found to be implausibly high. A VULCAN chemical kinetics model of WASP-12b suggests that chemical equilibrium is a reasonable assumption even when atmospheric mixing is implausibly rigorous. Guided by (exo)planet formation theory, we set Gaussian priors on the elemental abundances of carbon, oxygen, and nitrogen with the Gaussian peaks being centered on the measured C/H, O/H, and N/H values of the star. By enforcing chemical equilibrium, we find substellar O/H and stellar to slightly superstellar C/H for the dayside atmosphere of WASP-12b. The superstellar carbon-to-oxygen ratio is just above unity, regardless of whether clouds are included in the retrieval analysis, consistent with Madhusudhan et al. Furthermore, whether a temperature inversion exists in the atmosphere depends on one's assumption for the Gaussian width of the priors. Our retrieved posterior distributions are consistent with the formation of WASP-12b in a solar-composition protoplanetary disk, beyond the water iceline, via gravitational instability or pebble accretion (without core erosion) and migration inward to its present orbital location via a disk-free mechanism, and are inconsistent with both in situ formation and core accretion with disk migration, as predicted by Madhusudhan et al. We predict that the interpretation of James Webb Space Telescope WASP-12b data will not be prior-dominated

    Uniform Atmospheric Retrieval Analysis of Ultracool Dwarfs I : Characterizing Benchmarks, Gl570D and HD3651B

    Get PDF
    Michael Line, et al, 'UNIFORM ATMOSPHERIC RETRIEVAL ANALYSIS OF ULTRACOOL DWARFS. I. CHARACTERIZING BENCHMARKS, Gl 570D AND HD 3651B', The Astrophysical Journal, Vol. 802 (2), July 2015, doi: https://doi.org/10.1088/0004-637X/807/2/183, published by IOP.Interpreting the spectra of brown dwarfs is key to determining the fundamental physical and chemical processes occurring in their atmospheres. Powerful Bayesian atmospheric retrieval tools have recently been applied to both exoplanet and brown dwarf spectra to tease out the thermal structures and molecular abundances to understand those processes. In this manuscript we develop a significantly upgraded retrieval method and apply it to the SpeX spectral library data of two benchmark late T-dwarfs, Gl570D and HD3651B, to establish the validity of our upgraded forward model parameterization and Bayesian estimator. Our retrieved metallicities, gravities, and effective temperature are consistent with the metallicity and presumed ages of the systems. We add the carbon-to-oxygen ratio as a new dimension to benchmark systems and find good agreement between carbon-to-oxygens ratio derived in the brown dwarfs and the host stars. Furthermore, we have for the first time unambiguously determined the presence of ammonia in the low-resolution spectra of these two late T-dwarfs. We also show that the retrieved results are not significantly impacted by the possible presence of clouds, though some quantities are significantly impacted by uncertainties in photometry. This investigation represents a watershed study in establishing the utility of atmospheric retrieval approaches on brown dwarf spectra.Peer reviewedFinal Published versio
    corecore