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Abstract
To make a power spectrum (PS) detection of the 21 cm signal from the Epoch of Reionisation (EoR),
one must avoid/subtract bright foreground sources. Sources such as Fornax A present a modelling
challenge due to spatial structures spanning from arc seconds up to a degree. We compare modelling with
multi-scale (MS) CLEAN components to ‘shapelets’, an alternative set of basis functions. We introduce
a new image-based shapelet modelling package, SHAMFI. We also introduce a new CUDA simulation
code (WODEN) to generate point source, Gaussian, and shapelet components into visibilities. We test
performance by modelling a simulation of Fornax A, peeling the model from simulated visibilities,
and producing a residual PS. We find the shapelet method consistently subtracts large-angular-scale
emission well, even when the angular-resolution of the data is changed. We find that when increasing
the angular-resolution of the data, the MS CLEAN model worsens at large angular-scales. When testing
on real MWA data, the expected improvement is not seen in real data because of the other dominating
systematics still present. Through further simulation we find the expected differences to be lower than
obtainable through current processing pipelines. We conclude shapelets are worthwhile for subtracting
extended galaxies, and may prove essential for an EoR detection in the future, once other systematics
have been addressed.

Keywords: Astronomy data analysis - Giant radio galaxies - Reionisation - GPU computing

1 INTRODUCTION

Detecting primordial hydrogen during the Epoch of
Reionisation via the 21 cm line power spectrum has
been a hotly pursued goal in astrophysics over the last
decade, with projects on established instruments such
as LOFAR (van Haarlem et al., 2013), MWA (Tingay
et al., 2013), and PAPER (Parsons et al., 2010), and
future projects on HERA (DeBoer et al., 2017) and
SKA_LOW (Dewdney et al., 2013) all pushing for a
detection. The signal promises to constrain cosmological
models and fundamental physics (see Morales & Wyithe,
2010; Pritchard & Loeb, 2012; Mellema et al., 2013, for
reviews), but is swamped by intervening emission from
other astrophysical objects, including radio-loud galax-
ies and diffuse synchrotron emission. These foregrounds
can be up to ∼ 5 orders of magnitude brighter than the
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21 cm signal. Recent work and power spectrum limits
from LOFAR (Patil et al., 2017; Mertens et al., 2020),
MWA (Barry et al., 2019; Li et al., 2019; Trott et al.,
2020), and PAPER (Kerrigan et al., 2018) all point
towards painstakingly precise foreground subtraction be-
ing needed to facilitate a detection, with a strong focus
on spectral smoothness. As these instruments are inter-
ferometers, which make measurements in the Fourier
transform of image space called ‘visibilities’, any fore-
ground models benefit from easily being calculated in
both image and visibility space.

Some radio-loud galaxies are nearby and cover a large
angular extent on the sky (up to degrees in angle), and
display rich morphologies, e.g. Centaurus A (McKinley
et al., 2013). These sources present a modelling challenge,
and are bright enough to necessitate careful subtraction
when present in EoR data. The most straight-forward
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prescriptions build extended models out of Dirac delta
functions, which also lends synergy with CLEAN-based de-
convolution imaging techniques. For the most extended
objects this requires a large number of components,
which can become computationally demanding. Further-
more, as discussed in Yatawatta (2010), the choice of
pixel size in image deconvolution for extended emission
affects the modelled emission.

An alternative modelling approach is to use so-called
‘shapelets’, a set of orthonormal basis functions con-
sisting of weighted Hermite polynomials (Refregier,
2003). These basis functions are attractive due to hav-
ing analytically-defined Fourier transforms, and so can
be fitted in image space and then generated directly
in visibility space. They have been used in a number
of novel astronomical applications including: modelling
three-dimensional distribution of dust (Schechtman-
Rook et al., 2012); weak lensing measurements in simula-
tions of radio images (Bacon et al., 2014); gravitationally
lensed images (Tagore & Jackson, 2016); classifying bent
radio galaxies (Bastien et al., 2017). Furthermore, they
can be scaled to be extended on the sky, and lend them-
selves to compression/truncation. Yatawatta (2010) re-
placed CLEAN components with two dimensional shapelet
basis functions around Cygnus A during image-based de-
convolution, and was able to increase the dynamic range
in an image of Westerbork Synthesis Radio Telescope
data by a factor of ∼50. Calibration packages such as
SAGECAL1 (Yatawatta et al., 2009; Kazemi et al., 2011)
and the RTS (Mitchell et al., 2008; Riding et al., 2017)
have the capability to use shapelet models, with SAGECAL
shapelet models being used predominantly with LOFAR
data, as described in the LOFAR cookbook2.
Recent advances in CLEAN algorithms and packages

now allow multiscale (MS) CLEANing (see Cornwell, 2008,
and references therein), with the option to use Gaus-
sians during the CLEAN, as well as point sources3.
WSClean4 (Offringa et al., 2014; Offringa & Smirnov,
2017) is a cutting-edge imaging package capable of all
the above, and has the ability to produce point source
and Gaussian models. The main goal of this paper is
to compare a MS CLEAN component model to a shapelet
model, testing how effective and computationally effi-
cient they are during calibration and peeling, with the
primary metric being the 2D 21 cm power spectrum as
used by EoR experiments. We chose to use Fornax A as
a case-study, as it sits in the primary beam side-lobes
of one of the MWA EoR observational fields (see Jacobs
et al., 2016, for more details on MWA EoR processing

1https://github.com/nlesc-dirac/sagecal
2https://support.astron.nl/LOFARImagingCookbook/

shapelets.html
3We note that as unresolved sources, known as point sources,

are modelled using Dirac delta functions, when we refer to a point
source in a simulation, we are referring to modelling a component
using a Dirac delta function

4https://sourceforge.net/projects/wsclean/

pipelines), and as such must be peeled from the data.
In this paper we introduce a new image-based shapelet

fitting package, SHApelet Modelling For Interferometers
(SHAMFI5, Section 2.1), which we use to test against MS
CLEAN outputs from WSClean. To test the efficiency of
generating each type of model, as well as their ability to
accurately subtract EoR foreground emission, we have
also developed the visibility simulator WODEN6 (see Sec-
tion 3). We first simulate data using WODEN to test each
method in the absence of instrumental, atmospheric, and
astrophysical contaminants. We then test each method
on real MWA data using the RTS.
The paper is organised as follows. In Section 2 we

introduce shapelets as basis functions, and introduce
SHAMFI. In Section 3 we introduce the GPU-accelerated
visibility simulator WODEN. In Section 4 we introduce a
model from which to simulate Fornax A data, outline
simulations of this model with WODEN, and detail fitting
the simulations using SHAMFI. In Section 5 we introduce
a method to peel with the simulated data, and present
simulated peeling results, including testing truncation
on both the shapelet and MS CLEAN models. In Section 6
we fit and peel using real data. We discuss our results
in Section 7, and summarise in Section 8.

2 SHAPELET FITTING AND SHAMFI

Shapelets as a basis function are introduced in Re-
fregier (2003), to which we refer the reader for a detailed
overview; we briefly define them here for clarity within
this paper. Shapelets are orthonormal basis functions
based around hermite polynomials, and can be based in
a polar or Cartesian co-ordinate system, the latter of
which we use in this work. In one dimension they are
defined as:

Bp(x;β) ≡ β− 1
2
[
2pπ2p !

]− 1
2 Hp(β−1x) exp

(
−x2

2β2

)
,

(1)
where β is a scaling factor, p is a positive integer, and
Hp(x) is a hermite polynomial of order p. For our pur-
poses, x is the abscissa in a Cartesian co-ordinate system.
These basis functions can be converted to two dimensions
by multiplication:

Bp1,p2(x, y;β1, β2) = Bp1(x;β1)Bp2(y;β2), (2)

where y is the ordinate in a Cartesian co-ordinate
system. The fourier transform B̃p1,p2(kx, ky) of
Bp1,p2(x, y;β1, β2) is given by:

B̃p1,p2(kx, ky) = ip1+p2Bp1,p2(kx, ky;β−1
1 , β−1

2 ), (3)

meaning basis functions fitted in image space can be
analytically calculated directly in u, v space, as kx, ky ∝

5https://github.com/JLBLine/SHAMFI
6https://github.com/JLBLine/WODEN.git WODEN is not an

acronym, it’s named after the Anglo-Saxon pagan god

https://github.com/nlesc-dirac/sagecal
https://support.astron.nl/LOFARImagingCookbook/shapelets.html
https://support.astron.nl/LOFARImagingCookbook/shapelets.html
https://sourceforge.net/projects/wsclean/
https://github.com/JLBLine/SHAMFI
https://github.com/JLBLine/WODEN.git
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u, v. One further parameter of interest is the highest
order basis function to fit for, pmax = p1 +p2, which sets
the maximum resolution that can be fitted for. Given
a maximum (object size) and minimum angular extent
(point spread function (PSF) resolution) to be fitted,
ϑmax, ϑmin, Refregier (2003) show that good starting
points for β and pmax are

β ≈ (ϑminϑmax) 1
2 and (4)

pmax ≈
ϑmax

ϑmin
− 1. (5)

The consequence of setting pmax is that the total
number of basis functions to fit, ptot, grows as

ptot = (pmax + 2)(pmax + 1)
2 , (6)

meaning that the number of basis functions required
grows quickly with increasing model resolution and size.

2.1 Fitting with SHAMFI

The simplest method to fit the basis functions in image
space is to set up a number of linear equations, where
for an image with s × t pixels, each pixel value P at
location x, y can be described by:B0,0(x0, y0) . . . Bpmax,0(x0, y0)

...
. . .

...

B0,0(xs, yt) . . . Bpmax,0(xs, yt)


 C0,0

...

Cpmax,0

 =

P0,0
...

Ps,t


(7)

where Cp1,p2 is a scalar coefficient for the basis function
Bp1,p2 , for all basis functions where p1 +p2 ≤ pmax. This
reduces the problem to the well-studied linear matrix
Ax = b. For convenience, we use the python function
numpy.linalg.lstsq7, which solves for x by minimising
the Euclidean 2-norm ||b−Ax||2.
We choose to fit the basis functions in image space,

as it is far easier to isolate emission from a single object.
Each visibility is the sum of the emission of all sources
within the field of view, which is of particular concern
for large field-of-view instruments such as the MWA.
One can simply crop or edit in image space to remove
difficult/unwanted pixels. CLEANed restored images offer
an easy data set to fit, as the restoring beam tends to
smooth out any sharp model pixelisation effects from
the CLEAN fitting procedure. By design, these images
are ‘true’ sky emission convolved with a Gaussian kernel
known as the ‘restoring beam’, which is an approxima-
tion of the synthesised PSF. The synthesised PSF is the
image-based manifestation of the incomplete sampling of
an interferometer in the Fourier transform space in which
it samples data, and is the reason images must be decon-
volved. For a more accurate and instrument-independent

7https://docs.scipy.org/doc/numpy-1.13.0/reference/
generated/numpy.linalg.lstsq.html

shapelet fit, one must account for this. Rather than de-
convolve the CLEANed image however, we achieve the
equivalent by convolving the basis functions themselves
by the restoring beam kernel, as outlined in the LOFAR
cook-book mentioned in Section 1.

Right-ascension (RA) and declination (δ) are related
to x, y via a rotation by the position angle φPA, defined
as the the increasing angle to East from North. Aside
from fitting Cp1,p2 , β1, β2 and φPA are all variables.
Minimising ||b −Ax||2 for many values of β1, β2, and
φPA is computationally expensive. We instead settle for
an initial 2D-Gaussian fit (defined in Equation 10) to
the entire object to determine φPA, and then fit a range
of β1, β2 in a grid, using the residuals of each fit to
determine the optimal parameters. Examples of these
steps are given in Sections 4.2 and 6.1.

3 WODEN

To test the MS CLEAN and shapelet fitting methods, we
first use simulated data to isolate fitting errors from the
plethora of calibration and instrumental effects present
in real data. To enable a fair comparison of the speed
of point source, Gaussian, and shapelet visibility model
generation, we found it necessary to write a bespoke
simulator (WODEN), which we detail here. This gave us
control over the optimisation of each generation method,
allowing consistency. We found when testing model gen-
eration within the RTS that the architecture of the code
is optimised for shapelet models, rather than models
built with multiple point/Gaussian components, due
to the original needs of the calibration design at the
inception of the RTS. Work is underway to update the
architecture but remains on-going.

3.1 Point source generation

WODEN analytically generates a sky model for calibra-
tion directly in visibility space via the measurement
equation (c.f. Thompson et al., 2001)

V (u, v, w) =∫
B(l,m)I(l,m) exp[−2πi(ul+vm+w(n−1))]dldm

n
,

(8)

where V (u, v, w) is the measured visibility at baseline
co-ordinates u, v, w, given the sky intensity I(l,m) and
instrument beam pattern B(l,m), which are functions
of the direction cosines l,m, with n =

√
1− l2 −m2.

Equation 8 is discretised for point sources such that

V (ui, vi, wi) =∑
j

B(lj ,mj)I(lj ,mj) exp[−2πi(uilj+vimj+wi(nj−1))],

(9)

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.lstsq.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.lstsq.html
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where ui, vi, wi are the visibility co-ordinates of the ith

baseline, and lj , mj , nj is the sky position of the jth

point source.
This is an embarrassingly parallel problem, well suited

to optimisation on GPUs. The basic application of a
GPU to a problem such as this, is to calculate all itera-
tions over i, j in parallel, and then sum over j after the
fact. While this efficiently leverages the parallel compu-
tational structure of the GPU, it requires large arrays
to store the i× j outputs, which can quickly use large
amounts of GPU memory when j becomes large.
In recent years, the CUDA GPU-language (Nickolls

et al., 2008) has made progress in making efficient mem-
ory managed read-modify-write operations on a single
address, or so called atomic operations8. These allow cal-
culations to be made in parallel, and the results written
out to a single address with ‘hardware-level’ thread-safe
management, with minimal slow-down. We make use
of atomicAdd, which adds the output of a thread to a
single memory address, to perform the summation over j
in Equation 9. This reduces the size of the array needed
to store outputs significantly.
We make no attempt to add any instrumental or

ionospheric effects, and write WODEN to simply evaluate
Equation 9 with B(l,m) ≡ 1 for a given array layout
and observation parameters. We use WODEN here simply
to test the modelling efficiency and model-generation
costs of both the MS CLEAN and shapelet methods.

3.2 Gaussian and shapelet generation

To simulate peeling using both shapelets and MS CLEAN
outputs, we add the functionality to simulate Gaussians
and shapelets into WODEN. We define a two-dimensional
Gaussian in image space as:

G(x, y) = exp
(
−4 ln(2)

[
(x− x0)2

θ2
maj

+ (y − y0)2

θ2
min

])
(10)

where x0, y0 is the central point, and θmaj, θmin are the
full-width half-maximum (FWHM) major and minor
axes. Right-ascension and declination are related to x, y
via a rotation by the position angle φPA. We utilise the
RTS methodology of inserting a visibility ‘envelope’ ξ
into Equation 9 to create a Gaussian or shapelet source:

V (ui, vi, wi) =∑
j

ξj(ui, vi)I(lj ,mj) exp[−2πi(uilj +vimj +wi(nj −1))],

(11)

8https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#atomic-functions

where for a Gaussian:

ξj = exp
(
− π2

4 ln(2)
(
k2

xθ
2
majj + k2

yθ
2
minj

))
; (12)

kx = cos(φP Aj)vi + sin(φP Aj)ui; (13)
ky = − sin(φP Aj)vi + cos(φP Aj)ui; (14)

(noting that as visibilities are the Fourier dual of image
space, the normalisation factor is inverted from Equa-
tion 10) and for a shapelet:

ξj =
pk+pl<pmax∑

k,l

Cpk,pl
B̃pk,pl

(kx, ky); (15)

kx = π√
2 ln(2)

[cos(φP A)vi,j + sin(φP A)ui,j ] ; (16)

ky = π√
2 ln(2)

[− sin(φP A)vi,j + cos(φP A)ui,j ] , (17)

where ui,j , vi,j are visibility co-ordinates for baseline
i, calculated with a phase-centre RAj , δj , which cor-
responds to the central position x0, y0 used to fit the
shapelet model in image-space. Inserting the visibility
envelope ξ in this way causes a convolution in visibility
space, which in turn causes a multiplication in image
space. Using Equation 10 causes a convolution with a
Gaussian kernel that sums to one, meaning the visibility
can simply be multiplied by I(l,m) to give the correct
flux density. When using Equation 15, one must scale the
coefficients Cpk,pl

to ensure the kernel sums to one, to use
Equation 11 for both Gaussian and shapelet components.
In Equation 15 then we set Cpk,pl

≡ Cpk,pl
/I(lj ,mj),

and note that the coefficients output by SHAMFI have
this division by integrated flux density applied, hence
Equation 15 is implemented in WODEN exactly as it ap-
pears.
The shapelet basis function values B̃pk,pl

(u, v) can
be calculated by interpolating from one dimensional
look-up tables of B̃(kx; 1) (c.f. Equation 1), and scal-
ing by the appropriate β. When using the scalings pre-
sented in Equations 13, 14, 16, and 17, the first order
shapelet basis function is equal to a 2D Gaussian when
β1 = θmaj, β2 = θmin, explicitly G(x, y, θmaj, θmin) ≡
B0,0(x, y, θmaj, θmin). This is useful to test the consis-
tency between simulating Gaussians and shapelets.
For all simulation bench-marking used in this paper

we use a GeForce GTX 1080 Ti NVIDIA GPU, with
12GB of memory. This allows us to store all time steps in
GPU memory, meaning the optimisation over j includes
all time steps. The net result of these optimisations
is that per frequency channel, we launch a single CUDA
kernel instance each for all point sources, Gaussians, and
shapelets, all of which are optimised with a consistent
strategy. As u, v, w only differ in frequency by a scaling
factor, we only calculate them once per time step.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
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4 SIMULATING AND MODELLING
FORNAX A

4.1 VLA Fornax A Model

The goal of this work is to compare shapelet and MS
CLEAN methods to generate models of extended radio
galaxies. To fairly test the two methods as implemented
in SHAMFI and WSClean, in reality one would start with
calibrated visibility data, deconvolve and image using
WSClean to create MS CLEAN components, and create an
image to use when modelling with SHAMFI. This would
ensure both methods use the same data set, with the
same angular resolution, and both suffer any systematics
inherent to the data. As stated in Sections 1 and 3, we
choose to test the methods first using simulated data, to
reduce the number of systematics. To do this, we need
to create simulated ‘observed’ data in visibility space.
We choose to simulate observed visibility data using
point sources alone, to minimise biasing towards either
method. To build a realistic and high-resolution model
of a complex and extended radio galaxy, we use a public
VLA image of Fornax A at 1.4 GHz, obtained from the
NASA/IPAC Extragalactic Database9, a digitised ver-
sion of the data presented in Fomalont et al. (1989). The
online FITS file is a cutout around the galaxy, containing
some CLEAN residuals. To create a point source model,
we first apply a Gaussian taper around the edge of the
image (see Figure 1). Not only does this reduce CLEAN
residuals around the image, but also removes the sharp
boundary edge, minimising future ringing when imaging
from the simulated visibility data. We then move the
image from B1950 to J2000 co-ordinates, convert each
pixel into a point source (explicitly we convert each pixel
into a Dirac delta function, allowing us to run Equa-
tion 9 over all pixels), and scale the flux density of all
pixels to sum 500 Jy at 180MHz. We give each pixel a
single spectral index of −0.8. As the restoring beam of
this CLEAN-ed image is smaller than the resolution of the
instruments used in simulation, we make no attempt to
remove it from the image.

We simulate 6 MWA observations of 30.72MHz band-
width and 10 kHz spectral resolution using WODEN. These
simulations use the observational parameters of the real
data used to image Fornax A in Section 6.1. As the
MWA has recently been upgraded with added receiver
elements, dubbed phase II, it can be operated in various
configurations, with different angular resolutions and
sensitivities to diffuse or compact emission (see Wayth
et al., 2018, for details). Three of the observations use
the phase I configuration (maximum baseline ∼ 3 km),
with the other three the phase II extended configuration
(maximum baseline ∼ 5.5 km, hereto referred to as phase
II). The phase I observations have 2 s time resolution

9http://ned.ipac.caltech.edu/uri/NED::Image/fits/
1989ApJ...346L..17F/NGC_1316:I:20cm:fev1989:i

Figure 1. Upper panel: Fornax A image obtained from NED,
which includes CLEAN residuals around the edge of the lobes. Over-
plotted in red is a boundary line outside of which a Gaussian
taper was applied to create the model used in WODEN. Lower
panel: The image after applying the taper and transforming from
B1950 to J2000 centred co-ordinates. Any pixels that were not
masked (the grey region) in the lower image were converted into
point sources.

and the phase II observations 0.5 s resolution to reduce
time decorrelation on the longer baselines. We simu-
late 56 time steps for all observations regardless of the
time resolution to reduce computational load. We use
WSClean to perform a MS CLEAN on the simulated data,
with the results shown in Figure 2. These images have
not been beam corrected, given that WODEN does not
include beam effects. We include an example WSClean
command in Figure 12 to detail the settings used.

4.2 Modelling the Fornax A simulation

We fit the simulated Fornax A in the images in Figure 2
using SHAMFI as described in Section 2, and use Equa-
tion 5 to set pmax. We set ϑmax = 0.5◦, and set ϑmin
by oversampling the angular resolution of the array by
3, giving ϑmin = λ/3bmax, where λ is the wavelength of
the observation, and bmax the maximum baseline of the
array. We set the latter to 3 km for the phase I array
and 5.5 km for the phase II array. This yields pmax = 46
for phase I and pmax = 86 for phase II.

http://ned.ipac.caltech.edu/uri/NED::Image/fits/1989ApJ...346L..17F/NGC_1316:I:20cm:fev1989:i
http://ned.ipac.caltech.edu/uri/NED::Image/fits/1989ApJ...346L..17F/NGC_1316:I:20cm:fev1989:i
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Figure 2. MS CLEANed images of the WODEN simulation of Fornax A.
Top: All phase I configuration, imaged with briggs 0 weighting
to balance the large number of short baselines present in phase
I data with a reasonable resolution. Bottom: A combination of
both phase I and phase II configurations. These are imaged with
uniform weighting to take advantage of the higher resolution phase
II data.

During modelling we found the choice of location
of the zero pixel x, y = 0, 0 of the basis functions
severely affected the quality of fit. We found that for
a very extended, double-lobed radio galaxy like For-
nax A, the best solution was to split the galaxy into two
lobes, and fit each lobe separately. To avoid double-
fitting flux, we divided the image in two by fitting
each lobe with a normalised two-dimensional Gaus-
sian, which we label N1(x, y), N2(x, y), and then ap-
plying weights w1(x, y), w2(x, y) to each pixel such that
w1 = N1/(N1 + N2) , w2 = N2/(N1 + N2). Figure 3
shows an example of fitting for φ and the grid-search op-
timising for β1, β2. The fitting results for the simulated
phase I data are shown in Figure 4.
As is also prescribed in the LOFAR cookbook, we

found it necessary to subtract any compact point source-
like emission from the images including phase II data,
which reduced the number of higher order shapelets
required for a good fit. We do this manually by sub-
tracting image-based Gaussian components, as we found
traditional source finders struggle to deal with the com-
plexity of Fornax A to successfully isolate the point-like
details in the image. A full example of the image prepa-

Figure 3. Left: Example of initial Gaussian fit used to set φPA
of the basis functions for one of the simulated phase 1+2 lobe
images. The red line shows the FWHM, with the white lines
demonstrating the PA found. Right: Example of the grid based
approach for fitting β1 and β2. The colour scale here represents
the residuals in (Jy/pixel)2 left after fitting the image in the left
panel with all basis functions up to pmax = 86.

ration needed to model Fornax A is given in Section 6.1.
We note the tools to split a radio galaxy into Gaussian
masked regions, and manually subtract Gaussians, are
included in the SHAMFI package.

5 SIMULATED PEELING RESULTS

The main motivation behind this paper is to understand
how modelling Fornax A might impact a PS estimation of
the EoR through residuals left after peeling. We therefore
only test peeling on phase I data here, as the phase
II layout does not have the necessary short baselines
required to detect the EoR signal. To mimic peeling, we
simulate the full point source model from Section 4.1,
the MS CLEAN component models from the images in
Figure 2, and the fitted shapelet models described in
Section 4.2, with the same time and frequency cadence
(8 s, 80 kHz), all phase-centred on Fornax A, for a single
2 minute observation. We then fit a complex gain per tile
(as we simulate no beam, we have no polarisation, and
so only need to fit a single complex gain) for each set of
MS CLEAN and shapelet visibilities to the full simulation,
apply the gains to the model, and subtract from the
full simulated visibilities. While no antenna gains were
ever added during the simulation, real peeling includes a
calibration step, so we include that step in our analysis.
We reiterate that we have also not added thermal noise
to the simulations, making this a strongly idealised case.

5.1 Peeling method on simulated data

To fit the gains, we follow the calibration scheme im-
plemented in YANDAsoft10. As this scheme has yet to
be published we detail the formalism here. We label the
ideal visibility model for baseline ij as Iij . The visibility
model Mij (over the range of time and frequency that

10https://github.com/ATNF/yandasoft

https://github.com/ATNF/yandasoft
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Figure 4. Left: MS CLEANed phase 1 simulated data Middle: Fitted shapelet model recreated in image space, using restoring beam
convolved basis functions Right: The model subtracted from the data. The footprints of the two separate shapelet models (one for each
lobe) are clearly visible in the residual plot.

antenna gains are assumed constant) is

Mij(t, ν) = gig
∗
j Iij(t, ν). (18)

where gi is the gain on antenna i. The measured visibility
Vij is

Vij(t, ν) = (gi + ei)(gj + ej)∗Iij(t, ν), (19)

where ei is an additive error on the gain gi. We label
the residual visibilities as

Rij(t, ν) = Vij(t, ν)−Mij(t, ν). (20)

The gains can be optimised by iteratively solving for and
following local error gradients. These are found using
linear least-squares with data <(R) and =(R) and free
parameters <(e) and =(e). The complex conjugation
of gains in the equations above cannot be simply rep-
resented by a linear operator. So rather than solving
for complex solutions, we instead solve for the real and
imaginary parts separately and multiply the relevant
coefficients by −1. Assuming the error-squared term is
small allows the problem to be linearised as Ax = b,
where A is the design matrix, x are the parameters, and
b is the residual vector, e.g the real parts of the residual
vector b are

<[Rij(t, ν)] = <[e∗jgiIij(t, ν) + eig
∗
j Iij(t, ν)]. (21)

This can be implemented to solve for all ei in the vector
x as

x = [AᵀA]−1 Aᵀb. (22)

The assumption of linearity will improve as the system
converges. We found that as the simulations had no
instrumental or source sidelobe noise, the gains consis-
tently converged after 10 iterations of the calibration
loop, and so used 10 iterations for all the results shown
in this and following Sections. We fit a separate gain for
each time and frequency step. Once we have the gains,
we then fit a cubic spline across the entire bandwidth

using the scipy.interpolate.interp1d11 function, to
ensure we apply spectrally-smooth gains during peeling.
This was found to be necessary for an EoR detection
by Mouri Sardarabadi & Koopmans (2019), as without
smooth gains, the EoR signal can be suppressed. The
caveat to this being that we are assuming a linearised
calibration case, where spectrally-smoothing the gains
does yield improvement. In the non-linear regime this
may not be true, however given that these simulations
have zero noise and instrumental effects, the error terms
in calibration are likely small.

5.2 Peeling results

The results of peeling all four models from the full simula-
tion are shown in Figures 5 and 6. We image the peeling
residuals in Figure 5 using the same WSClean commands
used to image the full simulation in Figure 2. We make
one-dimensional (1D, Figure 5) and two-dimensional
(2D, Figure 6) PS estimates using CHIPS (Trott et al.,
2016), and note that the values of the powers in Fig-
ures 5 and 6 are indicative, rather than absolute. This
is because CHIPS grids using the primary beam shape
of the MWA, and normalises the outputs based on the
expected cosmological observing volume of the telescope.
Neither are present in WODEN simulations. All PS esti-
mates were run with identical settings however, and
so all differences are solely due to the models used for
peeling.
The 1D PS is an average over the fourier inverse (or

k-space) of three dimensions; two angular dimensions
across the sky, and one derived from the spectral di-
mension of the data. The 1D PS is currently used to
generate upper limits on an EoR detection. In Figure 5
we include a fiducial EoR signal as a point of reference to
the reader. This is taken from the public website12 asso-
ciated with the work of Mesinger et al. (2016). We select

11https://docs.scipy.org/doc/scipy/reference/generated/
scipy.interpolate.interp1d.html

12http://homepage.sns.it/mesinger/EOS.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html
http://homepage.sns.it/mesinger/EOS.html
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Figure 5. Simulated peeling results. Plots (a) to (d) show MS CLEANed peel residuals of an integration over the full bandwidth and time
span of a single simulated phase 1 observation, each peeled with a different model for Fornax A. The models are: (a) a shapelet model
from phase I data; (b) a shapelet model from phase 1 and 2 data; (c) a MS CLEAN model from phase I data; (d) a MS CLEAN model from
phase I and II data. A contour plot of the unpeeled power is shown on each plot as a angular scale reference. Plot (f) shows the 1D
PS as estimated with CHIPS for the models in (a) to (d). For reference, the power without peeling is shown for the unpeeled WODEN
simulation in (e). The line style and marker for each 1D PS plotted in (f) is also plotted in each plot from (a) to (d) on the lower right
for reference.

a redshift that matches the centre of the simulated fre-
quency bandwidth. The greatest ratio of expected EoR
signal to astrophysical foregrounds, after foreground re-
moval/avoidance, is expected to lie at low k-modes in
the 1D PS. In Figure 5 we concentrate on the smallest
k-modes. We find little difference when peeling with the
phase I MS CLEAN and shapelet models (purple line with
squares, and blue line with circles, respectively). We
see a difference in behaviour in the phase I+II models
however; including phase II data in the model improves
the subtraction at small k with the shapelet model,
but actually worsens the subtraction with the MS CLEAN
model.

To understand the difference, we turn to the 2D PS,
shown in Figure 6. The 2D PS averages the k-modes
obtained from angular scales upon the sky (k⊥, horizon-
tal axis), and plots them against the k-modes derived
from the spectral response (k‖, vertical axis). Broadly,
astrophysical foregrounds are expected to be spectrally
smooth, and so should inhabit the bottom of the 2D
PS, where k‖ is small. Instrumental chromaticity causes
the foregrounds to be swept up at higher k⊥ into the
so-called ‘wedge’ on the lower right, with the upper left
being known as the ‘window’, offering the cleanest area

of k-space in which to attempt a detection. If the peeled
residuals were perfectly spectrally smooth, we would
expect this window to be devoid of emission, however
there is clearly power present. There are two processes
that could have added in spectral structure: the cali-
bration step during peeling, and the gridding kernel of
CHIPS, which expects the data to have the imprint of
an MWA beam pattern, which was not included in the
simulation. Visibilities with quickly-changing spectral
structure have the effect of throwing power that would
normally sit at low k‖ up into high k‖, contaminating
the window. This effect can happen in real data, and
the net effect is more power in the wedge at a certain
k⊥ will also throw more power into the window at that
k⊥.

This effect goes some way to explaining the difference
in 1D power when adding higher angular resolution data
into the modelling process between shapelets and MS
CLEAN. When looking at the difference of the phase I and
phase I+II shapelet model residuals ((c) Figure 6), we
see more power has been subtracted out of the wedge at
all k⊥ beside the very smallest k⊥-bin, which has meant
there is less power in the window also. Comparing the MS
CLEAN models, the introduction of higher-angular resolu-
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Figure 6. 2D PS as estimated by CHIPS of the simulated peeling results. Plots (a) and (b) show the shapelet model peel results for
phase I and phase I+II, with (c) showing the difference between the 2D PS in (a) and (b). The MS CLEAN peel results are shown in a
similar manner in plots (d), (e), and (f). In the difference PS of (c) and (f), blue means the phase I model subtracted less power than
the phase I+II model, and red means the phase I model subtracted more power.

tion data has yielded a large improvement in the power
subtracted at large k⊥ (small angular scales), but has
worsened the subtraction at low k⊥, contaminating the
window. It is difficult to isolate what might cause worsen-
ing subtraction at large angular scales with MS CLEAN. It
is possible that as including the phase II configuration re-
duces the angular size and shape of the synthesised point
spread function, an MS CLEAN is more biased to smaller
angular scales. There are two WSClean parameters that
can be manually set to change the MS CLEAN settings:
-multiscale-scales, which forces the CLEAN to spe-
cific scales, and -multiscale-scale-bias, which bi-
ases the CLEAN to larger or smaller scales. We tested
forcing the scales that were CLEAN-ed for the phase
I+II image to be the same as the scales CLEAN-ed for
the phase I alone (plus an extra smaller scale to ac-
count for the increase in resolution). We also changed

-multiscale-scale-bias to favour larger scales. We
propagated both these changes through to the PS, and
found either no change in residuals, or worsened resid-
uals at all scales. While not an exhaustive parameter
search, we find the default settings give the best results,
and so use them throughout the paper. What is clear
is that the SHAMFI model was able to incorporate the
increased angular resolution, while simultaneously still
fitting the large scale structure.

5.3 Model truncation

As discussed in Section 5, calculating a value for a single
shapelet basis function requires more calculation than
for a single point source or Gaussian. As a point of
reference, for the simulated phase I + II image, WSClean
produced a total of 6331 MS CLEAN components (4540
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point source and 1791 Gaussian). Fitting a separate
shapelet model for each lobe, each with pmax = 86, gives
a total of 7656 basis functions to extrapolate. Therefore,
for shapelets to be computationally-competitive, some
compression/truncation of the full model is necessary.
We apply a basic truncation, by simply removing the
MS CLEAN components or shapelet basis functions that
contribute the smallest absolute flux density to the total
number of componentsNtot, up until some fraction fcomp
of all components remain. Explicitly, we find the number
of components Ncomp that satisfies

Ncomp∑
j

|Ij | <= fcomp

Ntot∑
j

|Ij |, (23)

where |Ij | > |Ij+1|. (24)

For a point source or Gaussian, Ij is simply the total
integrated flux density, with the absolute value necessary
as MS CLEAN components and shapelets can be positive
or negative. To find Ij ≡ Ip1,p2 for the shapelet basis
function Bp1,p2 , we image and sum the absolute of the
restoring beam G(θbmaj, θbmin) convolved basis function,

Ip1,p2 =
∑

s

∑
t

|Cp1,p2G(θbmaj, θbmin) ∗Bp1,p2(xs, yt)| ,

(25)
where ∗ is a convolution, for all s× t pixels used during
the model fit.
We have implemented this type of truncation within

SHAMFI, which has the necessary code base to allow the
compressed (reduced) set of shapelet basis functions to
be fit to the image again. We apply this extra step in
the following results.

We apply three levels of truncation to both MS CLEAN
and shapelets, for both the phase I and phase II models.
We then simulate these models through WODEN for the
same 2 minute observation as used in Section 5, and
apply the same peeling technique, fitting a single com-
plex gain per antenna with 10 iterations of Equation 22.
When running the simulations, we used nvprof13, the
NVIDIA line profiler, to measure the time spent perform-
ing calculations and memory allocations on the GPU.
For each level of truncation, we ran the peeled out-
puts through CHIPS, so we could compare the effect of
peeling against time taken in generating the visibilities.
The results are shown in Figure 7. As expected, the
uncompressed shapelet model takes more than twice the
time to generate than the MS CLEAN model. However, for
both the phase I and phase I+II models, shapelets can
be compressed to a level where they incur comparative
computational expense, and still peel out more power at
the largest spatial scales. By comparing the blue dashed
lines in the bottom plots of Figure 7, we can see that the

13https://docs.nvidia.com/cuda/profiler-users-guide/
index.html

100% MS CLEAN model subtracts more large-scale power
when only including phase I information, (bottom left),
rather than including both phase I+II. The amount of
power subtracted by the shapelet model is comparable
when incorporating just phase I information or both
phase I+II.

6 REAL DATA RESULTS

6.1 Imaging and modelling real MWA data

We use six 2minute MWA observations to create the
image of Fornax A in Figure 8. Three observations were
phase I, taken in December 2014 as part of the GLEAM
survey (Wayth et al., 2015; Hurley-Walker et al., 2017),
and the other three were phase II, taken in February 2018
as part of the GLEAM-X survey (Hurley-Walker, 2020,
in prep.). Calibration observations of the bright radio
galaxy Pictor A were also taken at the same frequency on
the same nights as the Fornax A observations. The Pic-
tor A observations were used to solve for an initial set of
calibration solutions, which were then applied to the For-
nax A data. An image was made with the full 30.72 MHz
bandwidth of the MWA, centered at 185MHz using joint
deconvolution with WSClean. This joint deconvolution
was enabled by the implementation of Image Domain
Gridding (IDG, van der Tol et al., 2018) into WSClean,
which uses the MWA primary beam (Sokolowski et al.,
2017) to properly take into account the changing beam
shapes for each snapshot observation in the gridding
process. Several rounds of self-calibration were then
performed with CALIBRATE (Offringa et al., 2016) to
improve the antenna gain solutions, using the MS CLEAN
component model produced by WSClean.

In Figure 8 we detail the image manipulation required
when running SHAMFI to obtain a good model using
real data, including the necessary subtraction of com-
pact emission to reduce the need for higher-order (and
therefore higher-resolution) shapelet basis functions. The
process of fitting the real Fornax A image, along with
all commands used, are available online as a tutorial in
the documentation of SHAMFI14.

6.2 Calibrating and peeling real data

To carry out calibration and peeling on the real data
sets we use the RTS, software which is used by the
Australian MWA EoR collaboration (see Jacobs et al.,
2016, for an overview of RTS processing). The RTS has
the capacity to perform direction-dependent calibra-
tion, correct for first-order ionospheric effects, and peel
sources (phase-rotate, calibrate, and subtract a source,
see Noordam, 2004). During the imaging of the real
data, WSClean produced 2537 MS CLEAN components.

14https://shamfi.readthedocs.io/en/latest/tutorial.
html

https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://shamfi.readthedocs.io/en/latest/tutorial.html
https://shamfi.readthedocs.io/en/latest/tutorial.html
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Figure 7. Results from compressing the MS CLEAN and shapelet models. Plots (a), (b), (c) on the left show results from phase I models,
where (d), (e), (f) on the right show results from phase I+II models. The top row show residual 1D PS left after peeling MS CLEAN
models (a and d) and shapelet models (b and e), at various levels of truncation. The percentage in the legend is the percentage of
remaining components after truncation. We take slices through the truncation results at specific low k values, shown by the vertical
dotted lines, and plot them as a function of GPU time in the bottom row (c and f). In both plots, dashed lines are MS CLEAN, and solid
lines are shapelet results. Matching colours plot matching k-modes.

These components, as well as the shapelet model de-
scribed in Figure 8, were used to peel with the RTS. We
peel Fornax A from two data sets: the first set where
Fornax A is near the primary beam centre, and there-
fore contributes a large fraction of the total power in
the sky; the second set made of standard MWA EoR
observations, where Fornax A is far from pointing cen-
tre, often at a total Stokes I beam power of ∼ 30%.
The latter data set is pointed toward the ‘EoR1’ field
at RA = 4h, δ = −27◦. We use the ionospheric metrics
detailed in Jordan et al. (2017) to pick an ionospherically-
quiet night for the EoR1 data. The key points of both
data sets are summarised in Table 1. For both data sets,
we use the same sky model, and simply switch in the MS
CLEAN or shapelet model of Fornax A. The sky model is
mostly based on the GLEAM catalogue (Hurley-Walker
et al., 2017), cross-matched to the following catalogues
and frequencies: VLSSr, 74MHz (Lane et al., 2012);
TGSS ADR1, 150MHz (Intema et al., 2017); MRC,
408MHz (Large et al., 1981); SUMSS, 843MHz (Mauch
et al., 2003); NVSS, 1400MHz (Condon et al., 1998). We
use PUMA (Line et al., 2017) for the cross-match, using

Table 1 Observational parameters of the real data used to
test peeling.

Observation Centre Fornax A EoR1
Dates 4th/12/2015

6th/12/2015 29th/11/2015
Central ν (MHz) 154.255 182.415

Time resolution (s) 0.5 2
ν resolution (kHz) 40 40
Total time (mins) 6 20

higher-resolution data for position or source morphology
where possible. We use the sky model developed in Pro-
copio et al. (2017) in the EoR1 field. This sky model
has been used by the MWA EoR analysis for a number
of years, most recently in the limits published in Trott
et al. (2020).

We use the RTS to perform foreground subtraction in
two steps: an initial direction-independent calibration to
a sky model of 1000 sources; a subtraction step where a
number of sources are fitted for first order ionospheric
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Figure 8. Stages of fitting for the Fornax A image using real MWA data as described in Section 6.1 and shown in (a). Four compact
sources (outlined in red circles) were found through trial and error to cause fitting problems, and so were subtracted as Gaussians. The
image was then split into two lobes, (b) and (c), and fitted separately. (d) shows the fitted shapelet model recreated in image space,
using restoring beam convolved basis functions, as well as the subtracted Gaussians. (e) shows the fitting residuals.

effects and peeled. Even though we are only comparing
the Fornax A models, we need to subtract off a number
of sources in the sky to be able to see the difference
in residuals, lest it be swamped by the rest of the sky.
Typically, we peel off 1000 sources in the latter stage. As
discussed in Section 3 however, the architecture of the
RTS is currently such that creating a single calibrator
source with thousands of components causes significant
computational expense. We found as the Fornax A data
set had a higher time resolution, when processing with
the MS CLEAN model, we could only peel off 500 sources
before running into GPU memory issues. The processing
time using the MS CLEAN model was also around 4 times
slower than when using the shapelet model. The results
of peeling 500 sources from the Fornax A data are shown
in Figure 9, which shows both image residuals, and 2D
PS.

In image space, the MS CLEAN and shapelet models
leave similar residuals. A limitation of the shapelet fitting
routine developed in this paper is exposed in Figure 9b.
The residuals are surrounded by a negative over-peel,
which we attribute to sidelobe noise from the original
image that was fitted into the shapelet model. This
adds in a ‘floor’ to the model, which the RTS then has
to calibrate for, leading to a slight under-peel of the
lobes, and a slight over-peel of the floor. Interestingly, a
similar negative border surrounds the MS CLEAN residu-
als, which is possibly due to the largest scale fitted for
during the CLEANing process, or a consequence of the

peeling algorithms internal to the RTS. While the 2D
difference power spectrum in Figure 9 suggests that the
shapelet model has subtracted more power at all scales,
the difference in the window is negligible, with the 1D
PS looking near identical.

Given the small difference seen between the two mod-
els, we decided to compare our shapelet model to an
earlier shapelet model created from early phase I data,
for the EoR1 data. This model has historically been
used by the Australian EoR team. Fornax A has long
been suspected of causing poor limits in the 1D PS. The
results of comparing these two models are shown in Fig-
ure 10, and again we see little difference in the resultant
1D PS, regardless of the stark contrast in residuals left
behind in the image. We explore possible reasons for the
small differences in the following Section.

7 DISCUSSION

While the simulation results in Section 5 indicate that
the new shapelet model of Formax A we have generated
should improve the 1D PS, the overall amplitude of the
improvements seen in the simulated PS were several
orders of magnitude lower than the current systematics
present in real data. This is of course expected, given
the simulations contained no other sources, were noise-
less, and had no instrumental effects. We did expect
however that this improvement might scale somewhat
with real data, given the residuals seen in real data were
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Figure 9. Real data peel results for Fornax A data detailed in Table 1: (a) the calibrated data before subtraction; (b) and (c), the
residuals after peeling the shapelet model and MS CLEAN model, respectively; (d) and (e), the 2D PS of the residuals after peeling the
shapelet model and MS CLEAN model, respectively; (f) the difference between the two 2D PS shown in (d) and (e), with the MS CLEAN
PS subtracted from the shapelet PS. In (e), red means the shapelet model subtracted more power during the peel, and blue means the
MS CLEAN model subtracted more.

far worse. The results using real data in Section 6 reso-
lutely disagree with this hypothesis, showing little to no
difference.
To address this, we return to simulations. Recently,

functionality was added to the RTS to be run as a simu-
lator, allowing the software to use an input sky model to
generate visibilities, which it can then calibrate and peel.
For a single 2 minute zenith observation, we weight our
sky model by the MWA primary beam, and select the
1000 apparently brightest sources. We simulate these
1000 sources (with the primary beam and MWA band-
pass), including the new MS CLEAN component model
from the real image of Fornax A. We then perform the
standard direction-independent calibration, followed by
direction-dependent ionospheric calibration to peel those
1000 sources, as we did with the real EoR1 data. We
performed the peel with both the new and old shapelet
models; this left us with two sets of residuals comparable
to the those seen in Figure 10. We show the differences
in the residual 1D PS in Figure 11.
This shows a greater than two orders of magnitude

difference in residuals after peeling with the two mod-

els, and also explains the lack of a difference in EoR1
data; the residuals in the RTS simulation vary of order
∼ 100 - 104, whereas in the real EoR1 data are of order
> 105. Any improvement garnered through improving
the Fornax A model is seemingly blown away by other
systematics in the flagging, calibration, and peeling of
real EoR1 data. There are a number of potential system-
atics that could be masking the improvement from the
new Fornax A model. We list a handful of them here:

• The calibration solutions from the RTS are not
fit to be continuous in frequency. All twenty four
1.28MHz coarse channels are calibrated somewhat
independently, which might inject false spectral
structure into the residual visibilities.
• We use AOFlagger (Offringa et al., 2015) to flag

RFI from our data. Early work suggests there may
be a higher flagging occupancy seen in EoR1 data,
when compared to data of the same frequency which
is pointed at a different patch of sky.
• For each sky subtraction, Fornax A is only one of
1000 sources being peeled. It is possible the rest
of our sky model is inaccurate enough to leave
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Figure 10. Real data peel results for the EoR1 data detailed in Table 1: (a) and (b), the new phase I+II shapelet model simulated
using the RTS and the residuals after peeling with this model, respectively; (c) and (d), the old shapelet model and residuals after
peeling, respectively; (e) an east-west polarisation difference 2D PS where the residuals of (d) (old shapelets) are subtracted from (b)
(new shapelets); (f) 1D PS of the residuals left behind after peeling the new shapelet mode (blue line with squares) and the old model
(orange with triangles), with an estimate of the thermal noise in the east-west polarisation; (g) the ratio of the 1D PS shown in (f),
with the new model divide by the old model. In (f), red means the new model subtracted more power during the peel, and blue means
the old model subtracted more. We only show east-west here, but the north-south display the same behaviour.

residuals that cumulatively out-weigh those left be-
hind after subtracting Fornax A. Furthermore, there
are the remaining sources that go unpeeled, that
through instrumental and calibration errors, can
still contribute power to the window.

Upcoming improved sky catalogues including
LOBES (Lynch, 2020, in prep.) and GLEAM-
X (Hurley-Walker, 2020, in prep.) which utilise phase
II MWA data should help improve the sky model and
subtraction to reduce residuals.
We also note here that in all simulations, Fornax A

was always given a single and known SI. In reality the SI
varies across the object, giving the residuals in real data
more spectral structure as well. This could be contribut-
ing to the lack of improvement seen in updating the
model on real data. In our current implementation, the

SI cannot be varied across the shapelet model, but could
easily be controlled for each component of the MS CLEAN
model. This spectral structure issue could possibly result
in MS CLEAN components to perform better subtractions
on sources with complicated spectral behaviour. Future
work could investigate fitting shapelet models to multi-
ple frequency bands, and fitting the derived coefficients
Cp1,p2 as a function of frequency. This may allow spectral
behaviour to vary with angular position in a shapelet
source.

8 SUMMARY

We have successfully implemented a method to fit
shapelets (SHAMFI) for use with the RTS, and explicitly
specified how shapelets can be implemented to gener-
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Figure 11. Residual 1D PS comparing peeling 1000 simulated
sources, including the new Fornax A MS CLEAN model, when peeling
sources including the new shapelet model (blue with squares) and
including the old shapelet model (orange with triangles).

ate sky models in visibility space. We have written a
new simulator, WODEN, in the CUDA language, allowing
us to optimise simulating point sources, Gaussians, and
shapelets in a consistent way. Through simulation, we
see little difference in a 1D PS after peeling Fornax A,
with shapelet and MS CLEAN models created from phase
I simulated MWA observations. When adding in phase II
(improved angular resolution) information to the simula-
tion, we see that the shapelet model is able to subtract
more power from the smallest k-modes than the equiv-
alent MS CLEAN model. Interestingly, at small k-modes,
the phase I+II MS CLEAN model subtracts less power
than the MS CLEAN model made from just phase I data.
Adding in the smaller angular resolution information
does however improve the peel at large k-modes. We
suggest that the change in scale of the synthesized PSF
could be biasing the MS CLEAN components to smaller
angular scales, but further work is required to verify this.
Through simulation, we are also find that with trunca-
tion, we are able to still better subtract power using the
phase I+II shapelet model for the same computational
cost.
No difference could be measured with a 1D PS be-

tween peeling with a shapelet or MS CLEAN model, when
using the RTS and CHIPS, on real data. Simulations
suggest that modest, but not insignificant, improved
residuals at the smallest k-modes could be achieved by
using shapelets over MS CLEAN components, when using
both phase I+II data. Further simulations show these
improvements are orders of magnitude smaller than cur-
rent systematics in our analysis and data. Pragmatically,
when using the current Australian EoR pipeline, a model
of Fornax A is essential, as a MS CLEAN model takes 4

times more CPU hours.
A potential weakness of SHAMFI was highlighted in

Section 6, where it was found shapelets tend to fit the
sidelobe noise of other sources surrounding the target ob-
ject. One could avoid this by fitting shapelets just to the
MS CLEAN components, rather than the restored image.
In doing this however, one will miss any diffuse emission
that hasn’t been deconvolved, limiting the improvement
shapelets can bring over MS CLEAN components.
In this paper, we focus on a single object, Fornax A.

In reality, thousands of sources must be peeled, ranging
from a simple to complicated morphology. Shapelets are
well suited to modelling sources with extended diffuse
emission. These types of sources are well observed by
the MWA, due to the compact layout of core receiving
elements giving the MWA an excellent surface bright-
ness sensitivity. Sources such as NGC 253 (Kapinska
et al., 2017) and extended sources described in Procopio
et al. (2017), which lie in MWA foregrounds, could be
accurately modelled with shapelets.

Although not able to immediately make an impact on
EoR limits, the simulations suggest that as the MWA
EoR analysis progresses in pushing down the systematics
from the instrument and software, shapelet models of
Fornax A should improve the limits found. With an eye
on future instruments such as the upcoming SKA_LOW,
with far greater angular resolution, we note that the
number of MS CLEAN components needed to create mod-
els will also increase. With the excellent response to
truncation shown by shapelets, they might be a vital
method to include highly complex sources in an EoR
foreground sky model, for a lower computational cost.
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A WSCLEAN COMMAND

###########################################
wsclean -size 512 512 -niter 100000 \

-name ./images/woden_VLA-ForA_phase1+2 \
-auto-threshold 0.5 -auto-mask 3 \
-pol I -multiscale -weight uniform \
-scale 0.004 -j 12 -mgain 0.85 \
-no-update-model-required \
-save-source-list \
-channels-out 4 -join-channels \
-fit-spectral-pol 1 \
./data/*.ms

###########################################

Figure 12. Example WSClean command used on simulated data

B SOFTWARE VERSIONS

Table 2 Versions of software used

Software git --describe

WSClean wsclean2.8-37-gda89428

IDG 0.6-178-g5736086c

WODEN (VLA
simulations)

1d1da63

WODEN (all
other simulations)

854d9c8

SHAMFI 1b81779

CASA casa-pipeline-release-5.6.2-
2.el7

CHIPS 71b251d

RTS 3f3b3210

http://dx.doi.org/10.1109/DSP.2009.4785912
http://dx.doi.org/10.1051/0004-6361/201220873
http://dx.doi.org/10.1051/0004-6361/201832858
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