20 research outputs found

    The recognizability and consequentiality of mistakes: Some notes on the article by Klemp et al.

    Get PDF
    In a documentary called Attrazione D’amore, the cinematographer Frank Scheffer provides footage from a lunch concert at Amsterdam’s Royal Concertgebouw. When the orchestra starts to play Mozart’s Piano Concerto No. 20 in D minor, it becomes apparent that the renowned pianist Maria João Pires had made a mistake. As the director of the concert, Riccardo Chailly, recounts in the film: “She was shocked because she was expecting us to play another concerto. So when I started the first bar of the D..

    Interaktivitet, instruktion och förstÄelse i naturvetenskapliga laborationer

    No full text
    Taking an analytical perspective founded on ethnomethodology and conversation analysis, the four studies presented in this thesis provide detailed analyses of video recorded lab work in mechanics at secondary and university level. The investigated activities all build on educational design afforded by a technology called probeware. The aim of the thesis is to investigate how teachers, task formulations, and technology make mechanics visible and learnable, and how students and teachers witnessably orient towards the practical achievement of understanding in the setting. The first study investigates how students use the technology in the interpretation and production of graphs: how they produce increasingly precise interpretations, how they fluently switch between different modes of meaning, and how the interpretations are both prospectively and retrospectively oriented. With a starting point in the analysis, the relevance of technology and task structure for the students’ interaction and learning are discussed. In the second study, the use of probeware is contrasted with the use of a simulation software. The study shows that some important differences between the local enactment of the two technologies are to be found in the practical work of the students; more specifically, in the ways that students orient to the subject matter content. The third study demonstrates an intimate interplay between how students display their problems and understandings and how instructors try to make the subject matter content visible and learnable. The analyzed episodes are illuminating with regard to the analytical notion of disciplined perception as applied to graph interpretation, the cognitive and practical competencies involved in producing, recognizing, and understanding graphs in mechanics, and the interactive work by which these competencies are made into objects of learning and instruction. The fourth study investigates episodes where explicit references to students’ understanding are made through formulations such as, “I don’t understand” or “do you get it?” The analysis focuses on the use, reference, interactional significance, and positioning of these formulations, and is followed by a discussion on the relation between the many and varied ways references to understanding are used and the concrete conditions of lab work. In sum, all four studies contribute to a detailed understanding of lab work as an educational practice and how learning and instruction are practically achieved.Avhandlingen baseras pĂ„ fyra empiriska studier av laborationsarbete i mekanik. Den analytiska utgĂ„ngspunkten hĂ€mtas frĂ„n etnometodologi och angrĂ€nsande ansatser. Materialet bestĂ„r av videoinspelad interaktion frĂ„n en tematisk lĂ€rarutbildning, en teknisk gymnasieutbildning samt en högskoleingenjörsutbildning. I laborationerna anvĂ€nder studenterna en specifik teknologi kallad probeware, som bestĂ„r av kraft- och rörelsedetektorer kopplade till en dator. Gemensamt för laborationerna Ă€r ocksĂ„ att uppgifterna bygger pĂ„ ett likartat pedagogiskt upplĂ€gg, vilket i korthet innebĂ€r att studenterna först ska stĂ€lla upp en hypotes, sedan genomföra ett experiment och slutligen diskutera relationen mellan hypotes och resultat. Avhandlingens övergripande syfte Ă€r att undersöka lĂ€randets konkreta villkor i laborationsarbetet: hur studenternas arbete, tillsammans med teknologi, uppgiftsformuleringar och lĂ€rarstöd, skapar vissa möjligheter för lĂ€rande och förstĂ„else. Detta syfte specificeras i de fyra delstudierna. I den första studien undersöks hur tvĂ„ studenter, genom verbala tolkningar, gester och rörelser, gradvis fĂ„r en större förstĂ„else av en graf som representerar tid och hastighet. I artikeln diskuteras teknologins och uppgiftsformuleringens roll för sĂ€ttet som studenterna interagerar och lĂ€r. Den andra studien jĂ€mför studenters anvĂ€ndning av probeware med anvĂ€ndningen av en simulering. Ett syfte med studien Ă€r att visa hur tvĂ„ aktiviteter som vid första anblick kan verka vara lika, samtidigt kan vara vĂ€ldigt olika om man i detalj studerar vad studenterna gör och hur de angriper Ă€mnesinnehĂ„llet. I den tredje studien analyseras interaktionen mellan tvĂ„ studenter och en lĂ€rare. Artikeln fokuserar pĂ„ det tĂ€ta samspelet mellan de sĂ€tt studenterna visar sina problem, i detta fall oförmĂ„gan att se nĂ„got relevant i en graf, och de sĂ€tt som lĂ€raren försöker lösa dessa problem genom att visa vad och hur man kan se nĂ„got i grafen. I den avslutande artikeln analyseras ett större antal sekvenser som innehĂ„ller explicita referenser till studenternas förstĂ„else, sĂ„som ”vi fattar inte”, ”förstĂ„r du?” och ”jag förstĂ„r den men inte den”. Analysen anvĂ€nds sedan som utgĂ„ngspunkt för en diskussion av relationen mellan de mĂ„nga och varierade sĂ€tt som förstĂ„else refereras och laborationens praktiska villkor

    Interaktivitet, instruktion och förstÄelse i naturvetenskapliga laborationer

    No full text
    Taking an analytical perspective founded on ethnomethodology and conversation analysis, the four studies presented in this thesis provide detailed analyses of video recorded lab work in mechanics at secondary and university level. The investigated activities all build on educational design afforded by a technology called probeware. The aim of the thesis is to investigate how teachers, task formulations, and technology make mechanics visible and learnable, and how students and teachers witnessably orient towards the practical achievement of understanding in the setting. The first study investigates how students use the technology in the interpretation and production of graphs: how they produce increasingly precise interpretations, how they fluently switch between different modes of meaning, and how the interpretations are both prospectively and retrospectively oriented. With a starting point in the analysis, the relevance of technology and task structure for the students’ interaction and learning are discussed. In the second study, the use of probeware is contrasted with the use of a simulation software. The study shows that some important differences between the local enactment of the two technologies are to be found in the practical work of the students; more specifically, in the ways that students orient to the subject matter content. The third study demonstrates an intimate interplay between how students display their problems and understandings and how instructors try to make the subject matter content visible and learnable. The analyzed episodes are illuminating with regard to the analytical notion of disciplined perception as applied to graph interpretation, the cognitive and practical competencies involved in producing, recognizing, and understanding graphs in mechanics, and the interactive work by which these competencies are made into objects of learning and instruction. The fourth study investigates episodes where explicit references to students’ understanding are made through formulations such as, “I don’t understand” or “do you get it?” The analysis focuses on the use, reference, interactional significance, and positioning of these formulations, and is followed by a discussion on the relation between the many and varied ways references to understanding are used and the concrete conditions of lab work. In sum, all four studies contribute to a detailed understanding of lab work as an educational practice and how learning and instruction are practically achieved.Avhandlingen baseras pĂ„ fyra empiriska studier av laborationsarbete i mekanik. Den analytiska utgĂ„ngspunkten hĂ€mtas frĂ„n etnometodologi och angrĂ€nsande ansatser. Materialet bestĂ„r av videoinspelad interaktion frĂ„n en tematisk lĂ€rarutbildning, en teknisk gymnasieutbildning samt en högskoleingenjörsutbildning. I laborationerna anvĂ€nder studenterna en specifik teknologi kallad probeware, som bestĂ„r av kraft- och rörelsedetektorer kopplade till en dator. Gemensamt för laborationerna Ă€r ocksĂ„ att uppgifterna bygger pĂ„ ett likartat pedagogiskt upplĂ€gg, vilket i korthet innebĂ€r att studenterna först ska stĂ€lla upp en hypotes, sedan genomföra ett experiment och slutligen diskutera relationen mellan hypotes och resultat. Avhandlingens övergripande syfte Ă€r att undersöka lĂ€randets konkreta villkor i laborationsarbetet: hur studenternas arbete, tillsammans med teknologi, uppgiftsformuleringar och lĂ€rarstöd, skapar vissa möjligheter för lĂ€rande och förstĂ„else. Detta syfte specificeras i de fyra delstudierna. I den första studien undersöks hur tvĂ„ studenter, genom verbala tolkningar, gester och rörelser, gradvis fĂ„r en större förstĂ„else av en graf som representerar tid och hastighet. I artikeln diskuteras teknologins och uppgiftsformuleringens roll för sĂ€ttet som studenterna interagerar och lĂ€r. Den andra studien jĂ€mför studenters anvĂ€ndning av probeware med anvĂ€ndningen av en simulering. Ett syfte med studien Ă€r att visa hur tvĂ„ aktiviteter som vid första anblick kan verka vara lika, samtidigt kan vara vĂ€ldigt olika om man i detalj studerar vad studenterna gör och hur de angriper Ă€mnesinnehĂ„llet. I den tredje studien analyseras interaktionen mellan tvĂ„ studenter och en lĂ€rare. Artikeln fokuserar pĂ„ det tĂ€ta samspelet mellan de sĂ€tt studenterna visar sina problem, i detta fall oförmĂ„gan att se nĂ„got relevant i en graf, och de sĂ€tt som lĂ€raren försöker lösa dessa problem genom att visa vad och hur man kan se nĂ„got i grafen. I den avslutande artikeln analyseras ett större antal sekvenser som innehĂ„ller explicita referenser till studenternas förstĂ„else, sĂ„som ”vi fattar inte”, ”förstĂ„r du?” och ”jag förstĂ„r den men inte den”. Analysen anvĂ€nds sedan som utgĂ„ngspunkt för en diskussion av relationen mellan de mĂ„nga och varierade sĂ€tt som förstĂ„else refereras och laborationens praktiska villkor

    Helping students to make sense of formal physics through interactive lecture demonstrations

    Get PDF
    Educational research repeatedly shows that delivery mode instruction, such as "traditional" lectures, commonly does not help students to acquire sufficient functional understanding of physics: typically, students just achieve a 15-20% normalized gain on the Force and Motion Conceptual Evaluation (FMCE). Previously, we have successfully designed different "conceptual" labs in physics and in electrical engineering, where an average normalized gain of 61% on the FMCE has been achieved. Inspired by our previous success with conceptual labs – and with a starting point in the ideas on so called Interactive Lecture Demonstrations as developed by David Sokoloff, Ron Thornton and co-workers – our aim with this project has been to a) test how interactive lecture demonstrations best are to be enacted in a Swedish lecture setting, and b) investigate the results of such lectures in terms of student understanding. As in the conceptual labs, interactive lecture demonstrations utilize computer-assisted data acquisition and analysis of data from a "real" experiment in real-time. In the lecture setting, however, only one experimental set up is used, and the students have to engage with the task by following the lecture, making predictions and answering questions on a worksheet. In the project, we have designed and implemented the interactive lecture demonstration format with a starting point in previous experiences and research. We have also investigated the results of these lectures by means of quantitative and qualitative methods. The result of the quantitative tests shows a 37% normalized gain on the FMCE, indicating that the implementation of this approach is better than "traditional" lectures. However, the result is not as good as the results obtained from the conceptual labs, probably because the students here were not as engaged in the experiment as they had been in the lab setting. Still, one should take into consideration that interactive lecture demonstrations use fewer resources; for instance, only one set of equipment is needed. For this reason, we suggest that the use of interactive lecture demonstrations should be considered in cases where it is not possible to implement a full set of conceptual labs. It would also be interesting to explore the optimal combination of labs and lectures. In sum, the implementation of interactive lecture demonstrations show that it is possible to do reforms, and achieve active learning, in the framework of a lecture setting.Final report from the Council for Renewal of Higher Education project 090/G03. Slutrapport för projekt 090/G03, RĂ„det för högre utbildning

    The sequential analysis of instruction

    No full text
    The present chapter takes an interest in instructions and the ways in which sequential analysis under the auspices of ethnomethodology and conversation analysis can contribute to their explication. This interest is explored in four contexts: textual instructions on how to crochet, instructions in textile workshops, feedback in academic supervision, and seminars in dental education. Initially, some general features of instructions are discussed in relation to the textual instructions – the irremediable incompleteness of instructions, how the sense of instructions is found in attempts to follow them, and the ties between instructions and assessment. The remaining three cases are used to highlight some differences with regards to the organization of instructions – how instructions are formulated, how instructions are responded to, the access teachers have to student understanding, what the relevant materializations of competence are, and the temporal organization in which these instructions are embedded. The temporal-material organization of a given setting is something with which both participants and analysts have to contend. How teachers and students do that – how they for instance orient to and manage the essential absence of relevant displays of understanding as a condition of their work – is what that the sequential analysis of instruction sets out to explicate

    Spatial analysis of exposure coefficients with applications to stomach cancer

    No full text
    Earlier ecological studies on the relation between H. pylori infection and stomach cancer have considered that the relation between these two variables, as estimated by the exposure coefficient, is constant. However, there is evidence to suggest that this relation changes geographically due to differences in strains of H. pylori. Since the prevalence of H. pylori varies with socio-economic status, the association between the latter and stomach cancer mortality may also vary geographically. This thesis studies stomach cancer by taking into account the geographical variability of the exposure coefficients. The study proposes the use of regression mixtures, clustering models and spatially varying regressions for the study of varying exposure coefficients. The effect of transformations of variables in these models appears to have been little considered. We provide new necessary conditions for invariance under transformations of variables for mixed effect models in general, and for the proposed models in particular. In addition, we show that varying exposure coefficients may induce a varying baseline risk. The regression mixtures and the clustering model are applied to a data set on stomach cancer incidence and H. pylori prevalence in 57 countries worldwide. We extend the clustering model to reflect any distance measure between the geographical units, including the Euclidean distance, in the formation of clusters. We also show that the clustering model performs better than the regression mixture model when the aim is to identify connected clusters and the observations present large variance. The results obtained with the clustering model supported the existence of three clusters where the interaction between the human and H. pylori populations have similar characteristics. Spatially varying regressions are applied to a data set of areal death counts of stomach cancer and spending power in 275 counties in continental Portugal. We provide an original strategy for implementing multivectorial intrinsic autoregressions as the distribution for the random effects. The results obtained with the application of this methodology were consistent with a varying exposure coefficient of spending power.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    « Ethnomethodological ethnography »

    No full text
    International audienc
    corecore