28 research outputs found

    LAPORAN INDIVIDU KEGIATAN PENGALAMAN LAPANGAN (PPL) PERIODE 18 JULI s.d 15 SEPTEMBER 2016 SMA NEGERI 2 BANGUNTAPAN

    Get PDF
    Praktik Pengalaman Lapangan (PPL) merupakan suatu wadah untuk menerapkan/mengaplikasikan ilmu yang selama ini telah dipelajari dalam bidang keahlian maupun ilmu keguruan yang berkaitan dengan peserta didik dalam proses belajar mengajar. Praktik pengalaman lapangan atau praktik mengajar ini mulai dilaksanakan pada tanggal 18 Juli s.d. 15 September 2016 berlokasi di SMA N 2 Banguntapan. Dalam praktik mengajar mahasiswa terlebih dahulu melaksanakan persiapan pembelajaran, yaitu membuat perencanaan pembelajaran dimulai dengan membuat rencana pelaksanaan pembelajaran sampai dengan evaluasi yang dilaksanakan. Kemudian melakukan koordinasi dan konsultasi kepada guru pembimbing di sekolah tersebut. Dalam bimbingan PPL, mahasiswa (penulis) mendapatkan kesempatan untuk melaksanakan pembelajaran di kelas X IPS 1 dan X IPS 2. Kurikulum yang digunakan adalah Kurikulum 2013 (K13). Begitu pula dengan penulisan Rencana Pelaksanaan Pembelajarannya (RPP), penggunaan metode pembelajaran yang diterapkan adalah dengan metode Problem Based Learning dan Cooperative Learning. Sedangkan media yang digunakan adalah White Board, LCD, spidol, lembar kerja dan mengadakan tugas individu untuk mengetahui sejauh mana kemampuan siswa dalam memahami materi yang telah disampaikan. Pada tahap pelaksanaan, mahasiswa mengajar sebanyak 6 kali dengan alokasi masingmasing 3 jam pelajaran setiap pertemuan. Program kegiatan PPL dapat terlaksana dengan baik dan lancar berkat adanya bimbingan dan arahan dari guru pembimbing dan dosen pembimbing selama praktik mengajar serta peran aktif peserta didik selama berlangsungnya KBM. Selain itu terlaksananya program PPL ini tidak terlepas dari dukungan dan bantuan dari pihak sekolah yang telah memberikan keluasan kesempatan kepada para mahasiswa PPL untuk mengembangkan potensi yang dimilikinya

    Growth and nutrition of moraxella and allied bacteria

    No full text

    Biodiversity and the Role of Microbial Resource Centres

    No full text
    Micro-organisms were the first forms of life on earth and have evolved into the most ecologically, genetically and metabolically diverse species known. Micro-organisms belong to all three Domains of life: The Bacteria, Archaea and Eukarya as well as the Viruses. They have shaped the evolution of the planet and continue to nurture and sustain the environment, plants and animals on which human society depends. While we continue to face difficulties posed by emerging animal, plant and human pathogens, most microorganisms are beneficial. Exploitation of microbial genetic diversity has been fundamental to advances made in biodiscovery and biotechnology. Micro-organisms are major sources of important pharmaceutical and industrial products for worldwide community benefits in health, agriculture and industry. Cultures of micro-organisms have been essential for the production of enzymes, fermentation products and metabolites. With advances in molecular biology, genes of micro-organisms and whole natural communities are being exploited and fuelling accelerated interest in biodiscovery. The OECD is strongly promoting that biological resource centres are essential to underpin advances in biotechnology, the life sciences and the bioeconomy. Microbial resource centres are more than collections. They work within the Convention on Biological Diversity (CBD) that was implemented to support the conservation and utilisation of biodiversity and recognises the principles of fair and equitable benefit sharing. They preserve and provide authenticated, genetically stable microbial and cell cultures, provide access to information on cultures and their characteristics, and undertake identification and description of new species. In Australia, the Council of Heads of Australian Collections of Micro-organisms is collaborating with the NCRIS Atlas of Living Australia project to develop the Australian Microbial Resources Information Network (AMRiN) integrated collections database to provide access to information on Australian microbial cultures for use in research, industry, government and education

    Genus IV. Blastobacter Zavarzin 1961, 962AL emend. Sly 1985, 44

    No full text

    Genus VI. Telluria Bowman, Sly, Hayward, Spiegel and Stackebrandt 1993b, 123VP

    No full text

    Occurrence of Tannin-Protein Complex Degrading Streptococcus sp. in Feces of Various Animals

    No full text
    Occurrence of tannin-protein complex (T-PC) degrading Streptococcus bovis in feces of 14 species of animals was investigated using a selective medium (colistin-oxolinic acid tannin-treated brain heart infusion). Strains of T-PC degrading S. bovis, all of which fermented mannitol, occurred commonly in browsing animals (koala, ringtail possum, deer) and omnivorous animals (guinea pig, pig, brushtail possum), whereas T-PC degrading S. bovis strains occurred less frequently in grazing herbivores (cattle, sheep, horse) and carnivores (dog, cat). Furthermore koalas and ringtail possums, whose diet was almost exclusively of tannin rich eucalypt leaves, had fecal streptococcal flora dominated by T-PC degrading S. bovis (59.9% for koalas; 59.1% for ringtail possums). Such dominance was never observed in any other animals examined

    Streptococcus gallolyticus sp. nov.; Gallate Degrading Organisms Formerly Assigned to Streptococcus bovis

    No full text
    Phenotypic charcteristics including the abilites two hydrolyze tannin and to decarboxylate gallic acid in 31 strains of S. bovis and 3 strains of S. equinus were compared with their dexoyribonucleic acid (DNA) relatedness. It was found that the strains capable of decarboxylating gallic acid all belong to a single DNA homology group which does not include either the type strain of S. bovis or the type strain of S. equinus. Thus it was concluded that the gallate degrading strains of S. bovis should be re-assigned to a new species, for which the name Streptococcus gallolyticus sp. nov. is proposed

    Analysis of the phylogenetic relationships of strains of Burkholderia solanacearum, Pseudomonas syzygii, and the blood disease bacterium of banana based on 16S rRNA gene sequences

    No full text
    We determined nearly complete 16S rRNA gene sequences for 19 isolates of Burkholderia solanacearum, three isolates of the blood disease bacterium of bananas, and two isolates of Pseudomonas syzygii, the cause of Sumatra disease of cloves. The dendrogram produced by comparing all of these sequences revealed that there were two division, which corresponded to the results obtained previously in a restriction fragment length polymorphism analysis (D. Cook, E. Barlow, and L. Sequeira, Mol. Plant Microbe Interact. 2:113-121, 1989) and a total 16S ribosomal DNA (rDNA) sequence analysis of four isolates representing four biovars of B. solanacearum (X. Li, M. Dorsch, T. Del Dot, L. I. Sly, E. Stackebrandt, and A. C. Hayward, J. Appl. Bacteriol. 74:324-329, 1993). Division 1 comprised biovars 3, 4, and 5 and an aberrant biovar 2 isolate (strain ACH0732), and division 2 included biovars 1, 2, and N2, the blood disease bacterium, and P. syzygii. Specific nucleotides at positions 458 to 460 (UUC) and 474 (A) characterized division 2, whereas in division 1 the nucleotides at these positions were ACU and U, respectively. However, strain ACH0732 had a U at position 458, as did division 2 isolates, and G instead of U at position 474. Division 2 consisted of two subdivisions: one subdivision contained two B. solanacearum isolates that originated from Indonesia, P. syzygii strains, and blood disease bacterium strains, and the other subdivision contained all of the other division 2 isolates. Within division 1, the level of 16S rDNA sequence similarity ranged from 99.8 to 100%, and within division 2, the levels of 16S rDNA sequence similarity, ranged from 99.1 to 100%. The division 1 isolates exhibited an average level of 16S rDNA sequence similarity to division 2 isolates of 99.3% (range, 99.1 to 99.5%). The occurrence of consistent polymorphisms in the 16S rDNA sequences of B. solanacearum strains, in particular unique 16S rDNA sequence differences in aberrant biovar 2 isolate ACH0732, and the occurrence of the Indonesian subdivision of division 2 suggest that this group is a rapidly evolving (tachytelic) group
    corecore