8,181 research outputs found

    Outcomes of an Evidence-Based, Data Driven-Model Fieldwork Experience for Occupational Therapy Students

    Get PDF
    Over the past decade, there has been an increased emphasis on evidence-based practice (EBP) and the use of outcome measurement in clinical practice, however, the implementation of evidence into practice remains challenging and irregular. During fieldwork, students often experience a disconnect between the emphasis on EBP in the classroom and lack of use in the clinic. Recognizing the need to develop high-quality, evidence-based and data-driven models of practice for student training, we partnered with local fieldwork educators to develop an innovative program that guides students and simultaneously trains fieldwork educators (FWE) in the use of a systematic data driven decision making (DDDM) process to infuse evidence into practice. Using a pre-post quasi-experimental design, we evaluated the impact of this program on students’ perceived knowledge and skills in use of EBP and DDDM. A focus group with participating fieldwork educators captured their knowledge and attitudes in the use of EBP and DDDM in their clinical sites. Eleven FWEs and twenty four students participated. Results revealed significant change in students’ knowledge and skill in use of EBP and DDDM. FWEs reported the program clarified the role of occupational therapy, enhanced communication, and validated the value of occupational therapy in their clinical site. This program serves as a model for training students to implement evidence and data driven approaches in clinical practice, thus bridging the gap between classroom and clinic

    Mojave Applied Ecology Notes Summer 2009

    Full text link
    BLM and wildfire protection in the Mojave, studies of the sticky ringstem flowering phenology in Lake Mead NRA, restoration work within gypsum soils, post-fire response synthesis for Mojave and Sonoran desert

    Insights into Regolith Dynamics from the Irradiation Record Preserved in Hayabusa Samples

    Get PDF
    The rates of space weathering processes are poorly constrained for asteroid surfaces, with recent estimates ranging over 5 orders of magnitude. The return of the first surface samples from a space-weathered asteroid by the Hayabusa mission and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering. We determine the rates of space weathering on Itokawa by measuring solar flare track densities and the widths of solar wind damaged rims on grains. These measurements are made possible through novel focused ion beam (FIB) sample preparation methods

    Transmission Electron Microscopy of Itokawa Regolith Grains

    Get PDF
    Introduction: In a remarkable engineering achievement, the JAXA space agency successfully recovered the Hayabusa space-craft in June 2010, following a non-optimal encounter and sur-face sampling mission to asteroid 25143 Itokawa. These are the first direct samples ever obtained and returned from the surface of an asteroid. The Hayabusa samples thus present a special op-portunity to directly investigate the evolution of asteroidal sur-faces, from the development of the regolith to the study of the effects of space weathering. Here we report on our preliminary TEM measurements on two Itokawa samples. Methods: We were allocated particles RA-QD02-0125 and RA-QD02-0211. Both particles were embedded in low viscosity epoxy and thin sections were prepared using ultramicrotomy. High resolution images and electron diffraction data were ob-tained using a JEOL 2500SE 200 kV field-emission scanning-transmission electron microscope. Quantitative maps and anal-yses were obtained using a Thermo thin-window energy-dispersive x-ray (EDX) spectrometer. Results: Both particles are olivine-rich (Fo70) with m-sized inclusions of FeS and have microstructurally complex rims. Par-ticle RA-QD02-0125 is rounded and has numerous sub-m grains attached to its surface including FeS, albite, olivine, and rare melt droplets. Solar flare tracks have not been observed, but the particle is surrounded by a continuous ~50 nm thick, stuctur-ally disordered rim that is compositionally similar to the core of the grain. One of the surface adhering grains is pyrrhotite show-ing a S-depleted rim (~8-10 nm thick) with nanophase Fe metal grains (<5 nm) decorating the outermost surface. The pyrrhotite displays a complex superstructure in its core that is absent in the S-depleted rim. Particle RA-QD02-0211 contains solar flare particle tracks (~2x109 cm-2) and shows a structurally disordered rim ~100 nm thick. The track density corresponds to a surface exposure of ~103-104 years based on the track production rate of [1]. The dis-ordered rim is nanocrystalline with minor amorphous material between crystalline domains. Quantitative element maps show the outermost ~10 nm of the disordered rim is Si-rich. Discussion and Conclusions: Both particles record the ef-fects of space weathering processes on Itokawa. Noguchi et al. [2] proposed that the disordered rims they observed on Itokawa particles largely result from solar wind radiation damage and we arrive at a similar conclusion for the two particles we analyzed. The microstructure of the S-depleted layer on the pyrrhotite grain in RA-QD02-0125 is similar to that observed in troilite irradiated with ~1018 4 kV He+ [3, 4]. Prolonged irradiation has also been shown to disorder pyrrhotite such that the superstructure reflec-tions are lost [5]

    Radial Color Gradients in K+A Galaxies in Distant Clusters of Galaxies

    Get PDF
    Galaxies in rich clusters with z \gtrsim 0.3 are observed to have a higher fraction of photometrically blue galaxies than their nearby counterparts. This raises the important question of what environmental effects can cause the termination of star formation between z \approx 0.3 and the present. The star formation may be truncated due to ram-pressure stripping, or the gas in the disk may be depleted by an episode of star formation caused by some external perturbation. To help resolve this issue, surface photometry was carried out for a total of 70 early-type galaxies in the cluster Cl1358+62, at z \sim 0.33, using two-color images from the Hubble Archive. The galaxies were divided into two categories based on spectroscopic criteria: 24 are type K+A (e.g., strong Balmer lines, with no visible emission lines), while the remaining 46 are in the control sample with normal spectra. Radial color profiles were produced to see if the K+A galaxies show bluer nuclei in relation to their surrounding disks. Specifically, a linear gradient was fit to the radial color profile of each galaxy. We find that the K+A galaxies on average tend to have slightly bluer gradients towards the center than the normals. A Kolmogorov-Smirnov two-sample test has been applied to the two sets of color gradients. The result of the test indicates that there is only a \sim2% probability that the K+A and normal samples are drawn from the same parent distribution. There is a possible complication from a trend in the apparent magnitude vs. color gradient relation, but overall our results favor the centralized star formation scenario as an important process in the evolution of galaxies in dense clusters.Comment: 16 pages, 12 figures, accepted for publication in A

    The Slothful Claw: Osteology and Taphonomy of \u3cem\u3eNothronychus mckinleyi\u3c/em\u3e and \u3cem\u3eN. graffami\u3c/em\u3e (Dinosauria: Theropoda) and Anatomical Considerations for Derived Therizinosaurids

    Get PDF
    Nothronychus was the first definitive therizinosaurian discovered in North America and currently represents the most specialized North American therizinosaurian genus. It is known from two species, No. mckinleyi from the Moreno Hill Formation (middle Turonian) in west-central New Mexico, and No. graffami from the Tropic Shale (early Turonian) in south-central Utah. Both species are represented by partial to nearly complete skeletons that have helped elucidate evolutionary trends in Therizinosauria. In spite of the biogeographical and evolutionary importance of these two taxa, neither has received a detailed description. Here, we present comprehensive descriptions of No. mckinleyi and No. graffami, the latter of which represents the most complete therizinosaurid skeleton known to date. We amend previous preliminary descriptions of No. mckinleyi and No. graffami based on these new data and modify previous character states based on an in-depth morphological analysis. Additionally, we review the depositional history of both specimens of Nothronychus and compare their taphonomic modes. We demonstrate that the species were not only separated geographically, but also temporally. Based on ammonoid biozones, the species appear to have been separated by at least 1.5 million years and up to 3 million years. We then discuss the impacts of diagenetic deformation on morphology and reevaluate potentially diagnostic characters in light of these new data. For example, the ulna of No. mckinleyi is curved whereas the ulna of No. graffami was considered straight, a character originally separating the two species. However, here we present the difference as much more likely related to diagenetic compression in No. graffami rather than as a true biologic difference. Finally, we include copies of three-dimensional surface scans of all major bones for both taxa for reference

    Measurements of Isoprene-Derived Organosulfates in Ambient Aerosols by Aerosol Time-of-Flight Mass Spectrometry—Part 2: Temporal Variability and Formation Mechanisms

    Get PDF
    Organosulfate species have recently gained attention for their potentially significant contribution to secondary organic aerosol (SOA); however, their temporal behavior in the ambient atmosphere has not been probed in detail. In this work, organosulfates derived from isoprene were observed in single particle mass spectra in Atlanta, GA during the 2002 Aerosol Nucleation and Characterization Experiment (ANARChE) and the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS). Real-time measurements revealed that the highest organosulfate concentrations occurred at night under a stable boundary layer, suggesting gas-to-particle partitioning and subsequent aqueous-phase processing of the organic precursors played key roles in their formation. Further analysis of the diurnal profile suggests possible contributions from multiple production mechanisms, including acid-catalysis and radical-initiation. This work highlights the potential for additional SOA formation pathways in biogenically influenced urban regions to enhance the organic aerosol burden
    corecore