4,324 research outputs found

    Potential for Controlling the Spread of \u3ci\u3eCentaurea maculosa\u3c/i\u3e with Grass Competition

    Get PDF
    ABSTRACT.-Spotted knapweed (Centaurea maculosa Lam.) is a major rangeland and roadside weed of the northern Rocky Mountains. It is often found in plant communities dominated by Pseudoroegneria spicatum or Festuca idahoensis, but it rarely invades roadsides dominated by Bromus inerrnis Leyss. Aboveground biomass of the 3 grass species grown in mixture with Centaurea was compared to growth in monoculture at a range of nitrogen input levels. The results suggest that Bromus is capable of suppressing the growth of Centaurea with the degree of suppression increasing with increasing nitrogen levels. The 2 native grasses had no impact on Centaurea under the controlled environment conditions of this study

    Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease

    Get PDF
    Prion diseases are fatal, transmissible, neurodegenerative diseases caused by the misfolding of the prion protein (PrP). At present, the molecular pathways underlying prion-mediated neurotoxicity are largely unknown. We hypothesized that the transcriptional regulator of the stress response, heat shock factor 1 (HSF1), would play an important role in prion disease. Uninoculated HSF1 knockout (KO) mice used in our study do not show signs of neurodegeneration as assessed by survival, motor performance, or histopathology. When inoculated with Rocky Mountain Laboratory (RML) prions HSF1 KO mice had a dramatically shortened lifespan, succumbing to disease ≈20% faster than controls. Surprisingly, both the onset of home-cage behavioral symptoms and pathological alterations occurred at a similar time in HSF1 KO and control mice. The accumulation of proteinase K (PK)-resistant PrP also occurred with similar kinetics and prion infectivity accrued at an equal or slower rate. Thus, HSF1 provides an important protective function that is specifically manifest after the onset of behavioral symptoms of prion disease

    The binary black-hole problem at the third post-Newtonian approximation in the orbital motion: Static part

    Get PDF
    Post-Newtonian expansions of the Brill-Lindquist and Misner-Lindquist solutions of the time-symmetric two-black-hole initial value problem are derived. The static Hamiltonians related to the expanded solutions, after identifying the bare masses in both solutions, are found to differ from each other at the third post-Newtonian approximation. By shifting the position variables of the black holes the post-Newtonian expansions of the three metrics can be made to coincide up to the fifth post-Newtonian order resulting in identical static Hamiltonians up the third post-Newtonian approximation. The calculations shed light on previously performed binary point-mass calculations at the third post-Newtonian approximation.Comment: LaTeX, 9 pages, to be submitted to Physical Review

    The neural correlates of emotion regulation by implementation intentions

    Get PDF
    Several studies have investigated the neural basis of effortful emotion regulation (ER) but the neural basis of automatic ER has been less comprehensively explored. The present study investigated the neural basis of automatic ER supported by ‘implementation intentions’. 40 healthy participants underwent fMRI while viewing emotion-eliciting images and used either a previously-taught effortful ER strategy, in the form of a goal intention (e.g., try to take a detached perspective), or a more automatic ER strategy, in the form of an implementation intention (e.g., “If I see something disgusting, then I will think these are just pixels on the screen!”), to regulate their emotional response. Whereas goal intention ER strategies were associated with activation of brain areas previously reported to be involved in effortful ER (including dorsolateral prefrontal cortex), ER strategies based on an implementation intention strategy were associated with activation of right inferior frontal gyrus and ventro-parietal cortex, which may reflect the attentional control processes automatically captured by the cue for action contained within the implementation intention. Goal intentions were also associated with less effective modulation of left amygdala, supporting the increased efficacy of ER under implementation intention instructions, which showed coupling of orbitofrontal cortex and amygdala. The findings support previous behavioural studies in suggesting that forming an implementation intention enables people to enact goal-directed responses with less effort and more efficiency

    Dissipative fluids out of hydrostatic equilibrium

    Get PDF
    In the context of the M\"{u}ller-Israel-Stewart second order phenomenological theory for dissipative fluids, we analyze the effects of thermal conduction and viscosity in a relativistic fluid, just after its departure from hydrostatic equilibrium, on a time scale of the order of relaxation times. Stability and causality conditions are contrasted with conditions for which the ''effective inertial mass'' vanishes.Comment: 21 pages, 1 postscript figure (LaTex 2.09 and epsfig.sty required) Submitted to Classical and Quantum Gravit

    Inference with interference between units in an fMRI experiment of motor inhibition

    Full text link
    An experimental unit is an opportunity to randomly apply or withhold a treatment. There is interference between units if the application of the treatment to one unit may also affect other units. In cognitive neuroscience, a common form of experiment presents a sequence of stimuli or requests for cognitive activity at random to each experimental subject and measures biological aspects of brain activity that follow these requests. Each subject is then many experimental units, and interference between units within an experimental subject is likely, in part because the stimuli follow one another quickly and in part because human subjects learn or become experienced or primed or bored as the experiment proceeds. We use a recent fMRI experiment concerned with the inhibition of motor activity to illustrate and further develop recently proposed methodology for inference in the presence of interference. A simulation evaluates the power of competing procedures.Comment: Published by Journal of the American Statistical Association at http://www.tandfonline.com/doi/full/10.1080/01621459.2012.655954 . R package cin (Causal Inference for Neuroscience) implementing the proposed method is freely available on CRAN at https://CRAN.R-project.org/package=ci

    Head--on Collision of Two Unequal Mass Black Holes

    Get PDF
    We present results from the first fully nonlinear numerical calculations of the head--on collision of two unequal mass black holes. Selected waveforms of the most dominant l=2, 3 and 4 quasinormal modes are shown, as are the total radiated energies and recoil velocities for a range of mass ratios and initial separations. Our results validate the close and distant separation limit perturbation studies, and suggest that the head--on collision scenario is not likely to produce an astrophysically significant recoil effect.Comment: 5 pages, 3 figure

    Capture Velocity for a Magneto-Optical Trap in a Broad Range of Light Intensity

    Get PDF
    In a recent paper, we have used the dark-spot Zeeman tuned slowing technique [Phys. Rev. A 62, 013404-1, (2000)] to measure the capture velocity as a function of laser intensity for a sodium magneto optical trap. Due to technical limitation we explored only the low light intensity regime, from 0 to 27 mW/cm^2. Now we complement that work measuring the capture velocity in a broader range of light intensities (from 0 to 400 mW/cm^2). New features, observed in this range, are important to understant the escape velocity behavior, which has been intensively used in the interpretation of cold collisions. In particular, we show in this brief report that the capture velocity has a maximum as function of the trap laser intensity, which would imply a minimum in the trap loss rates.Comment: 2 pages, 2 figure

    Thermodynamics of Heat Shock Response

    Get PDF
    Production of heat shock proteins are induced when a living cell is exposed to a rise in temperature. The heat shock response of protein DnaK synthesis in E.coli for temperature shifts from temperature T to T plus 7 degrees, respectively to T minus 7 degrees is measured as function of the initial temperature T. We observe a reversed heat shock at low T. The magnitude of the shock increases when one increase the distance to the temperature T023oT_0 \approx 23^o, thereby mimicking the non monotous stability of proteins at low temperature. Further we found that the variation of the heat shock with T quantitatively follows the thermodynamic stability of proteins with temperature. This suggest that stability related to hot as well as cold unfolding of proteins is directly implemented in the biological control of protein folding. We demonstrate that such an implementation is possible in a minimalistic chemical network.Comment: To be published in Physical Review Letter
    corecore