474 research outputs found
Standard Model stability bounds for new physics within LHC reach
We analyse the stability lower bounds on the Standard Model Higgs mass by
carefully controlling the scale independence of the effective potential. We
include resummed leading and next-to-leading-log corrections, and physical pole
masses for the Higgs boson, M_H, and the top-quark, M_t. Particular attention
is devoted to the cases where the scale of new physics \Lambda is within LHC
reach, i.e. \Lambda\leq 10 TeV, which have been the object of recent
controversial results. We clarify the origin of discrepancies and confirm our
earlier results within the error of our previous estimate. In particular for
\Lambda=1 TeV we find that
M_H[GeV]>52+0.64(M_t[GeV]-175)-0.50\frac{\alpha_s(M_Z)-0.118}{0.006}.
For fixed values of M_t and \alpha_s(M_Z), the error from higher effects, as
the lack of exact scale invariance of the effective potential and higher-order
radiative corrections, is conservatively estimated to be \simlt 5 GeV.Comment: 17 pages, latex + psfig.sty, 4 figure
Autonomous stochastic resonance in fully frustrated Josephson-junction ladders
We investigate autonomous stochastic resonance in fully frustrated
Josephson-junction ladders, which are driven by uniform constant currents. At
zero temperature large currents induce oscillations between the two ground
states, while for small currents the lattice potential forces the system to
remain in one of the two states. At finite temperatures, on the other hand,
oscillations between the two states develop even below the critical current;
the signal-to-noise ratio is found to display array-enhanced stochastic
resonance. It is suggested that such behavior may be observed experimentally
through the measurement of the staggered voltage.Comment: 6 pages, 11 figures, to be published in Phys. Rev.
Upper Bounds on the Lightest Higgs Boson Mass in General Supersymmetric Standard Models
In a general supersymmetric standard model there is an upper bound on
the tree level mass of the lightest Higgs boson which depends on the
electroweak scale, and the gauge and Yukawa couplings of the
theory. When radiative corrections are included, the allowed region in the
plane depends on the scale , below which the theory
remains perturbative, and the supersymmetry breaking scale , that we
fix to . In the minimal model with : $m_h<130\
GeVm_t<185\ GeV\Lambda=10^{16}\ GeVm_h<145\ GeVm_t<185\ GeV\Lambda=10^{16}\ GeVm_h<155\ GeVm_t<190\ GeV\Lambda\Lambda_sm_hm_t\Lambda=10\ TeVm_hm_t415\
GeV385\ GeV$, respectively.Comment: 13 pages, latex, IEM-FT-64/92 (5 postscript figures availables upon
request
Higgs Boson Bounds in Three and Four Generation Scenarios
In light of recent experimental results, we present updated bounds on the
lightest Higgs boson mass in the Standard Model (SM) and in the Minimal
Supersymmetric extension of the Standard Model (MSSM). The vacuum stability
lower bound on the pure SM Higgs boson mass when the SM is taken to be valid up
to the Planck scale lies above the MSSM lightest Higgs boson mass upper bound
for a large amount of SUSY parameter space. If the lightest Higgs boson is
detected with a mass M_{H} < 134 GeV (150 GeV) for a top quark mass M_{top} =
172 GeV (179 GeV), it may indicate the existence of a fourth generation of
fermions. The region of inconsistency is removed and the MSSM is salvagable for
such values of M_{H} if one postulates the existence of a fourth generation of
leptons and quarks with isodoublet degenerate masses M_{L} and M_{Q} such that
60 GeV 170 GeV.Comment: 7 pages, 4 figures. To be published in Physical Review
Vacuum Stability Higgs Mass Bound Revisited with Implications for Extra Dimension Theories
We take the standard model to be an effective theory including higher
dimensional operators suppressed by scale and re-examine the higgs
mass bounds from the requirements of vacuum stability. Our results show that
the effects of the higher dimensional operators on the higgs mass limits are
significant. As an implication of our results, we study the vacuum stability
higgs mass bounds in theories with extra dimensions.Comment: Latex, 14 pages, 1 figure. Added references. To appear in Phys. Rev.
Naturalness and theoretical constraints on the Higgs boson mass
Arbitrary regularization dependent parameters in Quantum Field Theory are
usually fixed on symmetry or phenomenology grounds. We verify that the
quadratically divergent behavior responsible for the lack of naturalness in the
Standard Model (SM) is intrinsically arbitrary and regularization dependent.
While quadratic divergences are welcome for instance in effective models of low
energy QCD, they pose a problem in the SM treated as an effective theory in the
Higgs sector. Being the very existence of quadratic divergences a matter of
debate, a plausible scenario is to search for a symmetry requirement that could
fix the arbitrary coefficient of the leading quadratic behavior to the Higgs
boson mass to zero. We show that this is possible employing consistency of
scale symmetry breaking by quantum corrections. Besides eliminating a
fine-tuning problem and restoring validity of perturbation theory, this
requirement allows to construct bounds for the Higgs boson mass in terms of
(where is the renormalized Higgs mass and
is the 1-loop Higgs mass correction). Whereas
(perturbative regime) in this scenario allows the Higgs boson mass around the
current accepted value, the inclusion of the quadratic divergence demands
arbitrarily large to reach that experimental value.Comment: 6 pages, 4 figure
Maximising Social Interactions and Effectiveness within Distance Learning Courses: Cases from Construction
Advanced Internet technologies have revolutionised the delivery of distance learning education. As a result, the physical proximity between learners and the learning providers has become less important. However, whilst the pervasiveness of these technological developments has reached unprecedented levels, critics argue that the student learning experience is still not as effective as conventional face-to-face delivery. In this regard, surveys of distance learning courses reveal that there is often a lack of social interaction attributed to this method of delivery, which tends to leave learners feeling isolated due to a lack of engagement, direction, guidance and support by the tutor. This paper defines and conceptualises this phenomenon by investigating the extent to which distance-learning programmes provide the social interactions of an equivalent traditional classroom setting. In this respect, two distance learning case studies were investigated, covering the UK and Slovenian markets respectively. Research findings identified that delivery success is strongly dependent on the particular context to which the specific distance learning course is
designed, structured and augmented. It is therefore recommended that designers of distance learning courses should balance the tensions and nuances associated with commercial viability and pedagogic effectiveness
Supernova Neutrinos, Neutrino Oscillations, and the Mass of the Progenitor Star
We investigate the initial progenitor mass dependence of the early-phase
neutrino signal from supernovae taking neutrino oscillations into account. The
early-phase analysis has advantages in that it is not affected by the time
evolution of the density structure of the star due to shock propagation or
whether the remnant is a neutron star or a black hole. The initial mass affects
the evolution of the massive star and its presupernova structure, which is
important for two reasons when considering the neutrino signal. First, the
density profile of the mantle affects the dynamics of neutrino oscillation in
supernova. Second, the final iron core structure determines the features of the
neutrino burst, i.e., the luminosity and the average energy. We find that both
effects are rather small. This is desirable when we try to extract information
on neutrino parameters from future supernova-neutrino observations. Although
the uncertainty due to the progenitor mass is not small for intermediate
(), we
can, nevertheless, determine the character of the mass hierarchy and whether
is very large or very small.Comment: 8 pages, 15 figure
Renormalization Group Running of Lepton Mixing Parameters in See-Saw Models with Flavor Symmetry
We study the renormalization group running of the tri-bimaximal mixing
predicted by the two typical flavor models at leading order. Although the
textures of the mass matrices are completely different, the evolution of
neutrino mass and mixing parameters is found to display approximately the same
pattern. For both normal hierarchy and inverted hierarchy spectrum, the quantum
corrections to both atmospheric and reactor neutrino mixing angles are so small
that they can be neglected. The evolution of the solar mixing angle
depends on and neutrino mass spectrum, the deviation
from its tri-bimaximal value could be large. Taking into account the
renormalization group running effect, the neutrino spectrum is constrained by
experimental data on in addition to the self-consistency
conditions of the models, and the inverted hierarchy spectrum is disfavored for
large . The evolution of light-neutrino masses is approximately
described by a common scaling factor.Comment: 23 pages, 6figure
Active Brownian Particles. From Individual to Collective Stochastic Dynamics
We review theoretical models of individual motility as well as collective
dynamics and pattern formation of active particles. We focus on simple models
of active dynamics with a particular emphasis on nonlinear and stochastic
dynamics of such self-propelled entities in the framework of statistical
mechanics. Examples of such active units in complex physico-chemical and
biological systems are chemically powered nano-rods, localized patterns in
reaction-diffusion system, motile cells or macroscopic animals. Based on the
description of individual motion of point-like active particles by stochastic
differential equations, we discuss different velocity-dependent friction
functions, the impact of various types of fluctuations and calculate
characteristic observables such as stationary velocity distributions or
diffusion coefficients. Finally, we consider not only the free and confined
individual active dynamics but also different types of interaction between
active particles. The resulting collective dynamical behavior of large
assemblies and aggregates of active units is discussed and an overview over
some recent results on spatiotemporal pattern formation in such systems is
given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
- …
