7,849 research outputs found
Metastable π Junction between an s±-Wave and an s-Wave Superconductor
We examine a contact between a superconductor whose order parameter changes sign across the Brillioun zone, and an ordinary, uniform-sign superconductor. Within a Ginzburg-Landau-type model, we find that if the barrier between the two superconductors is not too high, the frustration of the Josephson coupling between different portions of the Fermi surface across the contact can lead to surprising consequences. These include time-reversal symmetry breaking at the interface and unusual energy-phase relations with multiple local minima. We propose this mechanism as a possible explanation for the half-integer flux quantum transitions in composite niobium-iron pnictide superconducting loops, which were discovered in recent experiments [C.-T. Chen et al., Nature Phys. 6, 260 (2010).]
The use of a Salmonella Typhimurium live vaccine to control Salmonella Typhimurium in fattening pigs in field and effects on serological surveillance
This field study was designed to evaluate the use of a live-attenuated Salmonella Typh1murium vaccine in pigs in respect of efficacy agamst S. Typhimurium at time of slaughter and the effect on serological herd monitoring using a commercial mixed LPS-ELISA. About 1289 slaughtered pigs (805 of non vaccinated groups and 484 of vaccinated groups) were investigated by bacteriological and serological examination (1149 pigs). The study showed the efficacy of an oral vaccination with a live-attenuated Salmonella Typhimunum vaccme in reducmg the number of Salmonella carrying pigs at slaughter without a detectable interference with the serological monitoring of Salmonella (using a cut off at 40% OD level)
En-route to the fission-fusion reaction mechanism: a status update on laser-driven heavy ion acceleration
The fission-fusion reaction mechanism was proposed in order to generate
extremely neutron-rich nuclei close to the waiting point N = 126 of the rapid
neutron capture nucleosynthesis process (r-process). The production of such
isotopes and the measurement of their nuclear properties would fundamentally
help to increase the understanding of the nucleosynthesis of the heaviest
elements in the universe. Major prerequisite for the realization of this new
reaction scheme is the development of laser-based acceleration of ultra-dense
heavy ion bunches in the mass range of A = 200 and above. In this paper, we
review the status of laser-driven heavy ion acceleration in the light of the
fission-fusion reaction mechanism. We present results from our latest
experiment on heavy ion acceleration, including a new milestone with
laser-accelerated heavy ion energies exceeding 5 MeV/u
Prospects of accelerator and reactor neutrino oscillation experiments for the coming ten years
We analyze the physics potential of long baseline neutrino oscillation
experiments planned for the coming ten years, where the main focus is the
sensitivity limit to the small mixing angle . The discussed
experiments include the conventional beam experiments MINOS, ICARUS, and OPERA,
which are under construction, the planned superbeam experiments J-PARC to
Super-Kamiokande and NuMI off-axis, as well as new reactor experiments with
near and far detectors, represented by the Double-Chooz project. We perform a
complete numerical simulation including systematics, correlations, and
degeneracies on an equal footing for all experiments using the GLoBES software.
After discussing the improvement of our knowledge on the atmospheric parameters
and by these experiments, we investigate the
potential to determine within the next ten years in detail.
Furthermore, we show that under optimistic assumptions and for
close to the current bound, even the next generation of experiments might
provide some information on the Dirac CP phase and the type of the neutrino
mass hierarchy.Comment: 38 pages, 13 figures, Eqs. (1) and (5) corrected, small corrections
in Figs. 8, 9, and Tab. 4, discussion improved, ref. added, version to appear
in PRD, high resolution figures are available at
http://www.sns.ias.edu/~winter/figs0403068.htm
Dynamical Gauge Symmetry Breaking in Extension of the Standard Model
We study the extension of the Standard model with a
strong U(1) coupling. We argue that current experiments limit this coupling to
be relatively large. The model is dynamically broken to the Standard model at the scale of a few TeV with all the extra gauge bosons
and the exotic quarks acquiring masses much larger than the scale of
electroweak symmetry breaking. Furthermore we find that the model leads to
large dynamical mass of the top quark and hence also breaks the electroweak
gauge symmetry. It therefore leads to large dynamical effects within the
Standard model and can partially replace the Higgs interactions.Comment: 4 pages, revtex, no figures; revised version predicting realistic
mass spectru
Neutron-induced background in the CONUS experiment
CONUS is a novel experiment aiming at detecting elastic neutrino nucleus
scattering in the fully coherent regime using high-purity Germanium (Ge)
detectors and a reactor as antineutrino () source. The detector setup
is installed at the commercial nuclear power plant in Brokdorf, Germany, at a
very small distance to the reactor core in order to guarantee a high flux of
more than 10/(scm). For the experiment, a good
understanding of neutron-induced background events is required, as the neutron
recoil signals can mimic the predicted neutrino interactions. Especially
neutron-induced events correlated with the thermal power generation are
troublesome for CONUS. On-site measurements revealed the presence of a thermal
power correlated, highly thermalized neutron field with a fluence rate of
(74530)cmd. These neutrons that are produced by nuclear
fission inside the reactor core, are reduced by a factor of 10 on
their way to the CONUS shield. With a high-purity Ge detector without shield
the -ray background was examined including highly thermal power
correlated N decay products as well as -lines from neutron
capture. Using the measured neutron spectrum as input, it was shown, with the
help of Monte Carlo simulations, that the thermal power correlated field is
successfully mitigated by the installed CONUS shield. The reactor-induced
background contribution in the region of interest is exceeded by the expected
signal by at least one order of magnitude assuming a realistic ionization
quenching factor of 0.2.Comment: 28 pages, 28 figure
Comparison of different procedures to map reference evapotranspiration using geographical information systems and regression-based techniques
16 páginas, 6 figuras, 8 tablas.This paper compares different procedures for mapping reference evapotranspiration (ETo) by means of regression-based techniques and geographical information systems (GIS). ETo is calculated following the method of Hargreaves (HG) from a dense database of meteorological stations in the northernmost semi-arid region of Europe, the Ebro valley. The HG method requires the calculation of estimates of extraterrestrial radiation (Ra). We calculated this parameter using two approaches: (1) the common approach that assumes a planar surface and determines the parameter as a function of latitude and (2) using a digital terrain model (DTM) and GIS modelling. The maps were made on a monthly basis using both approaches. We also compared possible propagations of errors in the map calculations for maps derived from modelled layers of maximum and minimum temperatures with those modelled using previously determined local ETo calculations. We demonstrate that calculations of Ra from a DTM and GIS modelling provide a more realistic spatial distribution of ETo than those derived by only considering latitude. It is also preferable to model in advance the variables involved in the calculation of ETo (temperature and Ra) and to subsequently calculate ETo by means of layer algebra in the GIS rather than directly model the local ETo calculations. The obtained maps are useful for the purposes of agriculture and ecological and water resources management in the study area.This work has been supported by the project CGL2005-
04508/BOS financed by the Spanish Comission of Science
and Technology (CICYT) and FEDER, PIP176/2005
financed by the Aragón Government, and ‘Programa
de grupos de investigación consolidados’ (BOA 48 of
20-04-2005), also financed by the Aragón Government.
Research of the third author was supported by postdoctoral
fellowship by the Ministerio de Educación, Cultura
y Deporte (Spain).Peer reviewe
Quark-lepton mass unification at TeV scales
A scenario combining a model of early (TeV) unification of quarks and leptons
with the physics of large extra dimensions provides a natural mechanism linking
quark and lepton masses at TeV scale. This has been dubbed as early
quark-lepton mass unification by one of us (PQH) in one of the two models of
early quark-lepton unification, which are consistent with data, namely SU(4)_PS
\otimes SU(2)_L \otimes SU(2)_R \otimes SU(2)_H. In particular, it focused on
the issue of naturally light Dirac neutrino. The present paper will focus on
similar issues in the other model, namely SU(4)_PS \otimes SU(3)_L \otimes
SU(3)_H.Comment: Accepted for publication in PRD: The new version is in agreement with
the accepted manuscrip
- …