672 research outputs found

    Ratchet, pawl and spring Brownian motor

    Full text link
    We present a model for a thermal Brownian motor based on Feynman's famous ratchet and pawl device. Its main feature is that the ratchet and the pawl are in different thermal baths and connected by an harmonic spring. We simulate its dynamics, explore its main features and also derive an approximate analytical solution for the mean velocity as a function of the external torque applied and the temperatures of the baths. Such theoretical predictions and the results from numerical simulations agree within the ranges of the approximations performed.Comment: Submitted to Physica

    Development of a fully automatic shape model matching (FASMM) system to derive statistical shape models from radiographs: application to the accurate capture and global representation of proximal femur shape

    Get PDF
    SummaryObjectiveTo evaluate the accuracy and sensitivity of a fully automatic shape model matching (FASMM) system to derive statistical shape models (SSMs) of the proximal femur from non-standardised anteroposterior (AP) pelvic radiographs.DesignAP pelvic radiographs obtained with informed consent and appropriate ethical approval were available for 1105 subjects with unilateral hip osteoarthritis (OA) who had been recruited previously for The arcOGEN Study. The FASMM system was applied to capture the shape of the unaffected (i.e., without signs of radiographic OA) proximal femur from these radiographs. The accuracy and sensitivity of the FASMM system in calculating geometric measurements of the proximal femur and in shape representation were evaluated relative to validated manual methods.ResultsDe novo application of the FASMM system had a mean point-to-curve error of less than 0.9 mm in 99% of images (n = 266). Geometric measurements generated by the FASMM system were as accurate as those obtained manually. The analysis of the SSMs generated by the FASMM system for male and female subject groups identified more significant differences (in five of 17 SSM modes after Bonferroni adjustment) in their global proximal femur shape than those obtained from the analysis of conventional geometric measurements. Multivariate gender-classification accuracy was higher when using SSM mode values (76.3%) than when using conventional hip geometric measurements (71.8%).ConclusionsThe FASMM system rapidly and accurately generates a global SSM of the proximal femur from radiographs of varying quality and resolution. This system will facilitate complex morphometric analysis of global shape variation across large datasets. The FASMM system could be adapted to generate SSMs from the radiographs of other skeletal structures such as the hand, knee or pelvis

    Electroweak Phase Transitions in left-right symmetric models

    Get PDF
    We study the finite-temperature effective potential of minimal left-right symmetric models containing a bidoublet and two triplets in the scalar sector. We perform a numerical analysis of the parameter space compatible with the requirement that baryon asymmetry is not washed out by sphaleron processes after the electroweak phase transition. We find that the spectrum of scalar particles for these acceptable cases is consistent with present experimental bounds.Comment: 20 pages, 5 figures (included), some comments added, typos corrected and new references included. Final version to appear in PR

    Truncated Levy Random Walks and Generalized Cauchy Processes

    Full text link
    A continuous Markovian model for truncated Levy random walks is proposed. It generalizes the approach developed previously by Lubashevsky et al. Phys. Rev. E 79, 011110 (2009); 80, 031148 (2009), Eur. Phys. J. B 78, 207 (2010) allowing for nonlinear friction in wondering particle motion and saturation of the noise intensity depending on the particle velocity. Both the effects have own reason to be considered and individually give rise to truncated Levy random walks as shown in the paper. The nonlinear Langevin equation governing the particle motion was solved numerically using an order 1.5 strong stochastic Runge-Kutta method and the obtained numerical data were employed to calculate the geometric mean of the particle displacement during a certain time interval and to construct its distribution function. It is demonstrated that the time dependence of the geometric mean comprises three fragments following one another as the time scale increases that can be categorized as the ballistic regime, the Levy type regime (superballistic, quasiballistic, or superdiffusive one), and the standard motion of Brownian particles. For the intermediate Levy type part the distribution of the particle displacement is found to be of the generalized Cauchy form with cutoff. Besides, the properties of the random walks at hand are shown to be determined mainly by a certain ratio of the friction coefficient and the noise intensity rather then their characteristics individually.Comment: 7 pages, 3 figure

    Heavy-Higgs Lifetime at Two Loops

    Get PDF
    The Standard-Model Higgs boson with mass MH>>2MZ M_H >> 2M_Z decays almost exclusively to pairs of WW and ZZ bosons. We calculate the dominant two-loop corrections of O(GF2MH4) O( G_F^2 M_H^4 ) to the partial widths of these decays. In the on-mass-shell renormalization scheme, the correction factor is found to be 1+14.6 1 + 14.6 % (M_H/TeV)^2 + 16.9 % (M_H/TeV)^4 , where the second term is the one-loop correction. We give full analytic results for all divergent two-loop Feynman diagrams. A subset of finite two-loop vertex diagrams is computed to high precision using numerical techniques. We find agreement with a previous numerical analysis. The above correction factor is also in line with a recent lattice calculation.Comment: 26 pages, 6 postscript figures. The complete paper including figures is also available via WWW at http://www.physik.tu-muenchen.de/tumphy/d/T30d/PAPERS/TUM-HEP-247-96.ps.g

    Report from the HarmoSter study: inter-laboratory comparison of LC-MS/MS measurements of corticosterone, 11-deoxycortisol and cortisone.

    Get PDF
    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) panels that include glucocorticoid-related steroids are increasingly used to characterize and diagnose adrenal cortical diseases. Limited information is currently available about reproducibility of these measurements among laboratories. The aim of the study was to compare LC-MS/MS measurements of corticosterone, 11-deoxycortisol and cortisone at eight European centers and assess the performance after unification of calibration. Seventy-eight patient samples and commercial calibrators were measured twice by laboratory-specific procedures. Results were obtained according to in-house and external calibration. We evaluated intra-laboratory and inter-laboratory imprecision, regression and agreement against performance specifications derived from 11-deoxycortisol biological variation. Intra-laboratory CVs ranged between 3.3 and 7.7%, 3.3 and 11.8% and 2.7 and 12.8% for corticosterone, 11-deoxycortisol and cortisone, with 1, 4 and 3 laboratories often exceeding the maximum allowable imprecision (MAI), respectively. Median inter-laboratory CVs were 10.0, 10.7 and 6.2%, with 38.5, 50.7 and 2.6% cases exceeding the MAI for corticosterone, 11-deoxycortisol and cortisone, respectively. Median laboratory bias vs. all laboratory-medians ranged from -5.6 to 12.3% for corticosterone, -14.6 to 12.4% for 11-deoxycortisol and -4.0 to 6.5% for cortisone, with few cases exceeding the total allowable error. Modest deviations were found in regression equations among most laboratories. External calibration did not improve 11-deoxycortisol and worsened corticosterone and cortisone inter-laboratory comparability. Method imprecision was variable. Inter-laboratory performance was reasonably good. However, cases with imprecision and total error above the acceptable limits were apparent for corticosterone and 11-deoxycortisol. Variability did not depend on calibration but apparently on imprecision, accuracy and specificity of individual methods. Tools for improving selectivity and accuracy are required to improve harmonization

    Superconductivity in the two dimensional Hubbard Model.

    Full text link
    Quasiparticle bands of the two-dimensional Hubbard model are calculated using the Roth two-pole approximation to the one particle Green's function. Excellent agreement is obtained with recent Monte Carlo calculations, including an anomalous volume of the Fermi surface near half-filling, which can possibly be explained in terms of a breakdown of Fermi liquid theory. The calculated bands are very flat around the (pi,0) points of the Brillouin zone in agreement with photoemission measurements of cuprate superconductors. With doping there is a shift in spectral weight from the upper band to the lower band. The Roth method is extended to deal with superconductivity within a four-pole approximation allowing electron-hole mixing. It is shown that triplet p-wave pairing never occurs. Singlet d_{x^2-y^2}-wave pairing is strongly favoured and optimal doping occurs when the van Hove singularity, corresponding to the flat band part, lies at the Fermi level. Nearest neighbour antiferromagnetic correlations play an important role in flattening the bands near the Fermi level and in favouring superconductivity. However the mechanism for superconductivity is a local one, in contrast to spin fluctuation exchange models. For reasonable values of the hopping parameter the transition temperature T_c is in the range 10-100K. The optimum doping delta_c lies between 0.14 and 0.25, depending on the ratio U/t. The gap equation has a BCS-like form and (2*Delta_{max})/(kT_c) ~ 4.Comment: REVTeX, 35 pages, including 19 PostScript figures numbered 1a to 11. Uses epsf.sty (included). Everything in uuencoded gz-compressed .tar file, (self-unpacking, see header). Submitted to Phys. Rev. B (24-2-95

    Diminished Superoxide Generation Is Associated With Respiratory Chain Dysfunction and Changes in the Mitochondrial Proteome of Sensory Neurons From Diabetic Rats

    Get PDF
    Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.OBJECTIVE Impairments in mitochondrial function have been proposed to play a role in the etiology of diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in axons of sensory neurons in type 1 diabetes is due to abnormal activity of the respiratory chain and an altered mitochondrial proteome. RESEARCH DESIGN AND METHODS Proteomic analysis using stable isotope labeling with amino acids in cell culture (SILAC) determined expression of proteins in mitochondria from dorsal root ganglia (DRG) of control, 22-week-old streptozotocin (STZ)-diabetic rats, and diabetic rats treated with insulin. Rates of oxygen consumption and complex activities in mitochondria from DRG were measured. Fluorescence imaging of axons of cultured sensory neurons determined the effect of diabetes on mitochondrial polarization status, oxidative stress, and mitochondrial matrix-specific reactive oxygen species (ROS). RESULTS Proteins associated with mitochondrial dysfunction, oxidative phosphorylation, ubiquinone biosynthesis, and the citric acid cycle were downregulated in diabetic samples. For example, cytochrome c oxidase subunit IV (COX IV; a complex IV protein) and NADH dehydrogenase Fe-S protein 3 (NDUFS3; a complex I protein) were reduced by 29 and 36% (P < 0.05), respectively, in diabetes and confirmed previous Western blot studies. Respiration and mitochondrial complex activity was significantly decreased by 15 to 32% compared with control. The axons of diabetic neurons exhibited oxidative stress and depolarized mitochondria, an aberrant adaption to oligomycin-induced mitochondrial membrane hyperpolarization, but reduced levels of intramitochondrial superoxide compared with control. CONCLUSIONS Abnormal mitochondrial function correlated with a downregulation of mitochondrial proteins, with components of the respiratory chain targeted in lumbar DRG in diabetes. The reduced activity of the respiratory chain was associated with diminished superoxide generation within the mitochondrial matrix and did not contribute to oxidative stress in axons of diabetic neurons. Alternative pathways involving polyol pathway activity appear to contribute to raised ROS in axons of diabetic neurons under high glucose concentration.This work was supported by grants from the Juvenile Diabetes Research Foundation (#1-2008-280) and the National Institutes of Health to R.T.D. (grants NS-054847 and DK-073594). E.A. was supported by a grant from the National Science and Engineering Research Council (#3311686-06) to P.F. and subsequently by a postgraduate scholarship from the Manitoba Health Research Council. S.K.R.C. and E.Z. were supported by grants to P.F. from the Canadian Institutes for Health Research (#MOP-84214) and the Juvenile Diabetes Research Foundation (#1-2008-193). D.R.S. was supported by a grant to P.F. from the Manitoba Health Research Council. This work was also funded by the St. Boniface General Hospital and Research Foundation

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    A mathematical framework for critical transitions: normal forms, variance and applications

    Full text link
    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio
    corecore