429 research outputs found

    Intense tera-hertz laser driven proton acceleration in plasmas

    Get PDF
    We investigate the acceleration of a proton beam driven by intense tera-hertz (THz) laser field from a near critical density hydrogen plasma. Two-dimension-in-space and three-dimension-in-velocity particle-in-cell simulation results show that a relatively long wavelength and an intense THz laser can be employed for proton acceleration to high energies from near critical density plasmas. We adopt here the electromagnetic field in a long wavelength (0.33 THz) regime in contrast to the optical and/or near infrared wavelength regime, which offers distinct advantages due to their long wavelength (k ¼ 350 lm), such as the k2 scaling of the electron ponderomotive energy. Simulation study delineates the evolution of THz laser field in a near critical plasma reflecting the enhancement in the electric field of laser, which can be of high relevance for staged or post ion acceleration

    National Institutes of Health Career Development Awards for Cardiovascular Physician-Scientists: Recent Trends and Strategies for Success

    Get PDF
    Nurturing the development of cardiovascular physician-scientist investigators is critical for sustained progress in cardiovascular science and improving human health. The transition from an inexperienced trainee to an independent physician-scientist is a multifaceted process requiring a sustained commitment from the trainee, mentors, and institution. A cornerstone of this training process is a career development (K) award from the National Institutes of Health (NIH). These awards generally require 75% of the awardee's professional effort devoted to research aims and diverse career development activities carried out in a mentored environment over a 5-year period. We report on recent success rates for obtaining NIH K awards, provide strategies for preparing a successful application and navigating the early career period for aspiring cardiovascular investigators, and offer cardiovascular division leadership perspectives regarding K awards in the current era. Our objective is to offer practical advice that will equip trainees considering an investigator path for success

    Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8

    Get PDF
    The cyclotron radiation emission spectroscopy (CRES) technique pioneered by Project 8measures electromagnetic radiation fromindividual electrons gyrating in a backgroundmagnetic field to construct a highly precise energy spectrumfor beta decay studies and other applications. The detector,magnetic trap geometry and electron dynamics give rise to amultitude of complex electron signal structures which carry information about distinguishing physical traits.Withmachine learningmodels, we develop a scheme based on these traits to analyze and classifyCRES signals. Proper understanding and use of these traits will be instrumental to improve cyclotron frequency reconstruction and boost the potential of Project 8 to achieveworld-leading sensitivity on the tritiumendpointmeasurement in the future

    Locust: C++ software for simulation of RF detection

    Get PDF
    The Locust simulation package is a newC++software tool developed to simulate the measurement of time-varying electromagnetic fields using RF detection techniques. Modularity and flexibility allow for arbitrary input signals, while concurrently supporting tight integration with physics-based simulations as input. External signals driven by the Kassiopeia particle tracking package are discussed, demonstrating conditional feedback between Locust and Kassiopeia during software execution. An application of the simulation to the Project8 experiment is described
    corecore