59 research outputs found

    Stochastic homogenization of the laser intensity to improve the irradiation uniformity of capsules directly driven by thousands laser beams

    Get PDF
    Illumination uniformity of a spherical capsule directly driven by laser beams has been assessed numerically. Laser facilities characterized by ND = 12, 20, 24, 32, 48 and 60 directions of irradiation with associated a single laser beam or a bundle of NB laser beams have been considered. The laser beam intensity profile is assumed super-Gaussian and the calculations take into account beam imperfections as power imbalance and pointing errors. The optimum laser intensity profile, which minimizes the root-mean-square deviation of the capsule illumination, depends on the values of the beam imperfections. Assuming that the NB beams are statistically independents is found that they provide a stochastic homogenization of the laser intensity associated to the whole bundle, reducing the errors associated to the whole bundle by the factor  , which in turn improves the illumination uniformity of the capsule. Moreover, it is found that the uniformity of the irradiation is almost the same for all facilities and only depends on the total number of laser beams Ntot = ND × NB

    Ignition conditions for inertial confinement fusion targets with a nuclear spin-polarized DT fuel

    Get PDF
    The nuclear fusion cross-section is modified when the spins of the interacting nuclei are polarized. In the case of deuterium?tritium it has been theoretically predicted that the nuclear fusion cross-section could be increased by a factor d = 1.5 if all the nuclei were polarized. In inertial confinement fusion this would result in a modification of the required ignition conditions. Using numerical simulations it is found that the required hot-spot temperature and areal density can both be reduced by about 15% for a fully polarized nuclear fuel. Moreover, numerical simulations of a directly driven capsule show that the required laser power and energy to achieve a high gain scale as d-0.6 and d-0.4 respectively, while the maximum achievable energy gain scales as d0.9

    Control of Rayleigh-Taylor instability by vertical vibration in large aspect ratio containers

    Get PDF
    We consider a horizontal heavy fluid layer supported by a light, immiscible one in a wide (as compared to depth) container, which is vertically vibrated intending to counterbalance the Rayleigh-Taylor instability of the flat, rigid-body vibrating state. In the simplest case when the density and viscosity of the lighter fluid are small compared to their counterparts in the heavier fluid, we apply a long wave, weakly nonlinear analysis that yields a generalized Cahn-Hilliard equation for the evolution of the fluid interface. This equation shows that the stabilizing effect of vibration is like that of surface tension, and is used to analyze the linear stability of the flat state, the local bifurcation at the instability threshold and some global existence and stability properties concerning the steady states without dry spots. The analysis is extended to two cases of practical interest. Namely, (a) the viscosity of one of the fluids is much smaller than that of the other one, and (b) the densities and viscosities of both fluids are quite close to each other

    Multicomponent theory of buoyancy instabilities in magnetized plasmas: The case of magnetic field parallel to gravity

    Full text link
    We investigate electromagnetic buoyancy instabilities of the electron-ion plasma with the heat flux based on not the magnetohydrodynamic (MHD) equations, but using the multicomponent plasma approach when the momentum equations are solved for each species. We consider a geometry in which the background magnetic field, gravity, and stratification are directed along one axis. The nonzero background electron thermal flux is taken into account. Collisions between electrons and ions are included in the momentum equations. No simplifications usual for the one-fluid MHD-approach in studying these instabilities are used. We derive a simple dispersion relation, which shows that the thermal flux perturbation generally stabilizes an instability for the geometry under consideration. This result contradicts to conclusion obtained in the MHD-approach. We show that the reason of this contradiction is the simplified assumptions used in the MHD analysis of buoyancy instabilities and the role of the longitudinal electric field perturbation which is not captured by the ideal MHD equations. Our dispersion relation also shows that the medium with the electron thermal flux can be unstable, if the temperature gradients of ions and electrons have the opposite signs. The results obtained can be applied to the weakly collisional magnetized plasma objects in laboratory and astrophysics.Comment: Accepted for publication in Astrophysics & Space Scienc
    • …
    corecore